--- base_model: google-bert/bert-base-uncased datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:91585 - loss:TripletLoss widget: - source_sentence: Why do people say "God bless you"? sentences: - Will the humanity become extinct? - Why do people sneeze? - Why do they say "God bless you" when you sneeze? - source_sentence: What clarinet mouthpieces are the best? sentences: - What is the name of a good web design company in Delhi? - Which instrument should I learn? - Which clarinet mouthpiece should I buy? - source_sentence: How do l see who viewed my videos on Instagram? sentences: - What is the possibility of time travel becoming a reality? - Why can't I view a live video I posted on Facebook? - How can I see who viewed my video on Instagram but didn't like my video? - source_sentence: How can I become more social if I am an introvert? sentences: - What tricks can introverts learn to become more social? - Nobody answers my questions on Quora, why? - How did you become an introvert? - source_sentence: How did Halloween Originate? What country did it originate on? sentences: - What was Halloween like in the 1990s? - In what country did Halloween originate? - What are the weirdest/creepiest dreams you have ever had? model-index: - name: SentenceTransformer based on google-bert/bert-base-uncased results: - task: type: triplet name: Triplet dataset: name: QQP nli dev type: QQP-nli-dev metrics: - type: cosine_accuracy value: 0.987814465408805 name: Cosine Accuracy - type: dot_accuracy value: 0.012382075471698114 name: Dot Accuracy - type: manhattan_accuracy value: 0.9874213836477987 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.987814465408805 name: Euclidean Accuracy - type: max_accuracy value: 0.987814465408805 name: Max Accuracy --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-triplets") # Run inference sentences = [ 'How did Halloween Originate? What country did it originate on?', 'In what country did Halloween originate?', 'What was Halloween like in the 1990s?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `QQP-nli-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.9878 | | dot_accuracy | 0.0124 | | manhattan_accuracy | 0.9874 | | euclidean_accuracy | 0.9878 | | **max_accuracy** | **0.9878** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 91,585 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------| | How can I overcome a bad mood? | How do I break out of a bad mood? | The world around me seems so austere and gloomy because of my mood. It's depressing me considerably. What can I do? | | What are symptoms of mild schizophrenia? | What are some symptoms of when you become schizophrenic? | Is confusion another symptom of being schizophrenic? | | What are some ideas which transformed ordinary people into millionaires? | What are some things ordinary people know but millionaires don't? | What can billionaires do that millionaire cannot do? | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 5,088 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:----------------------------------------------------------------------------|:------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Why do I see the exact same questions in my feed all the time? | Why are too many questions repeating in my feed sometimes? | Why does this "question" keep showing up in the Unorganized Questions global_feed? (see description for screenshot) | | Can we expect time travel to become a reality? | Can we time travel anyhow? | What do you hAve to say about time travel (I am not science student but I read it on net and its so exciting topic but still no clear idea that is it possible or it's just a rumour)? | | Is it too late to start medical school at 32? | Is it too late to go to medical school at 24? | As a 14 year old girl who wants to go to medical school, should I work extremely hard and study a lot now to be ready for it? What should I do? | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | QQP-nli-dev_max_accuracy | |:------:|:-----:|:-------------:|:------:|:------------------------:| | 0 | 0 | - | - | 0.8783 | | 0.1746 | 500 | 2.3079 | 0.8664 | 0.9581 | | 0.3493 | 1000 | 0.9367 | 0.5027 | 0.9737 | | 0.5239 | 1500 | 0.6747 | 0.4471 | 0.9743 | | 0.6986 | 2000 | 0.5323 | 0.3740 | 0.9776 | | 0.8732 | 2500 | 0.4765 | 0.3178 | 0.9825 | | 1.0479 | 3000 | 0.4104 | 0.2809 | 0.9866 | | 1.2225 | 3500 | 0.3266 | 0.2633 | 0.9870 | | 1.3971 | 4000 | 0.2129 | 0.2566 | 0.9862 | | 1.5718 | 4500 | 0.1559 | 0.2542 | 0.9858 | | 1.7464 | 5000 | 0.1432 | 0.2482 | 0.9853 | | 1.9211 | 5500 | 0.1361 | 0.2370 | 0.9845 | | 2.0957 | 6000 | 0.1179 | 0.2102 | 0.9880 | | 2.2703 | 6500 | 0.0921 | 0.2201 | 0.9870 | | 2.4450 | 7000 | 0.0656 | 0.2075 | 0.9878 | | 2.6196 | 7500 | 0.0497 | 0.2011 | 0.9876 | | 2.7943 | 8000 | 0.0455 | 0.1960 | 0.9878 | | 2.9689 | 8500 | 0.0422 | 0.1973 | 0.9872 | | 3.1436 | 9000 | 0.0349 | 0.1863 | 0.9890 | | 3.3182 | 9500 | 0.0319 | 0.1850 | 0.9882 | | 3.4928 | 10000 | 0.02 | 0.1854 | 0.9882 | | 3.6675 | 10500 | 0.0184 | 0.1849 | 0.9884 | | 3.8421 | 11000 | 0.0178 | 0.1828 | 0.9878 | ### Framework Versions - Python: 3.10.6 - Sentence Transformers: 3.0.1 - Transformers: 4.39.3 - PyTorch: 2.2.2+cu118 - Accelerate: 0.28.0 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```