hcy5561 commited on
Commit
b0e8108
1 Parent(s): 627b3a1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets:
4
+ - stanfordnlp/snli
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ pipeline_tag: sentence-similarity
9
+ tags:
10
+ - sentence-transformers
11
+ - sentence-similarity
12
+ - feature-extraction
13
+ - generated_from_trainer
14
+ - dataset_size:494430
15
+ - loss:SoftmaxLoss
16
+ widget:
17
+ - source_sentence: A person out front of a business with a woman statue holding a
18
+ bottle.
19
+ sentences:
20
+ - A couple holds hands.
21
+ - The young boy is upside down.
22
+ - the man is baking some bread
23
+ - source_sentence: A person is dressed up in a weird costume with a red tongue sticking
24
+ out.
25
+ sentences:
26
+ - thhe man plays a tuba
27
+ - Four siblings are climbing on a fake black bear.
28
+ - the tongue is blue
29
+ - source_sentence: A man on a train is talking on a cellphone.
30
+ sentences:
31
+ - A man is playing a flute on a bus.
32
+ - The woman is sexy.
33
+ - two cyclists racing
34
+ - source_sentence: An elderly woman giving her daughter a hug.
35
+ sentences:
36
+ - There are two women hugging.
37
+ - A man holds a flag on the street.
38
+ - people are sitting on a red roofed bus going to a museum
39
+ - source_sentence: A pilot dressed in a dark-colored sweater is sitting in the cock-pit
40
+ of a plane with his hands crossed.
41
+ sentences:
42
+ - A pilot is sitting in his plain with his hands crossed
43
+ - The boys are playing outside on a log.
44
+ - Two men discuss their love lives.
45
+ ---
46
+
47
+ # SentenceTransformer based on google-bert/bert-base-uncased
48
+
49
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** Sentence Transformer
55
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
56
+ - **Maximum Sequence Length:** 512 tokens
57
+ - **Output Dimensionality:** 768 tokens
58
+ - **Similarity Function:** Cosine Similarity
59
+ - **Training Dataset:**
60
+ - [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
61
+ - **Language:** en
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
75
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli")
95
+ # Run inference
96
+ sentences = [
97
+ 'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.',
98
+ 'A pilot is sitting in his plain with his hands crossed',
99
+ 'The boys are playing outside on a log.',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 768]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### stanfordnlp/snli
152
+
153
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
154
+ * Size: 494,430 training samples
155
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
156
+ * Approximate statistics based on the first 1000 samples:
157
+ | | premise | hypothesis | label |
158
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
159
+ | type | string | string | int |
160
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.24 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.55 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>0: ~31.10%</li><li>1: ~33.40%</li><li>2: ~35.50%</li></ul> |
161
+ * Samples:
162
+ | premise | hypothesis | label |
163
+ |:------------------------------------------------------------------------------|:---------------------------------------|:---------------|
164
+ | <code>Two men, one in yellow, are on a wooden boat.</code> | <code>Two men swimming in water</code> | <code>2</code> |
165
+ | <code>Two people sleep on a couch.</code> | <code>Two people are asleep.</code> | <code>0</code> |
166
+ | <code>a little boy is learning to swim with the help of a float board.</code> | <code>The boy is crawling.</code> | <code>2</code> |
167
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
168
+
169
+ ### Evaluation Dataset
170
+
171
+ #### stanfordnlp/snli
172
+
173
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
174
+ * Size: 27,468 evaluation samples
175
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
176
+ * Approximate statistics based on the first 1000 samples:
177
+ | | premise | hypothesis | label |
178
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
179
+ | type | string | string | int |
180
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.66 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.48 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~36.10%</li><li>1: ~31.80%</li><li>2: ~32.10%</li></ul> |
181
+ * Samples:
182
+ | premise | hypothesis | label |
183
+ |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------|
184
+ | <code>A taxi cab driver looks stressed out in his car.</code> | <code>a taxi driver is stressed</code> | <code>0</code> |
185
+ | <code>Two men do trick in a park.</code> | <code>The men only sat on the bench in the park, doing nothing.</code> | <code>2</code> |
186
+ | <code>Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face.</code> | <code>One lady makes a shocked face at the camera as the photographer tells the women they are lost.</code> | <code>1</code> |
187
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
188
+
189
+ ### Training Hyperparameters
190
+ #### Non-Default Hyperparameters
191
+
192
+ - `per_device_train_batch_size`: 64
193
+ - `per_device_eval_batch_size`: 64
194
+ - `num_train_epochs`: 4
195
+ - `warmup_ratio`: 0.1
196
+ - `batch_sampler`: no_duplicates
197
+
198
+ #### All Hyperparameters
199
+ <details><summary>Click to expand</summary>
200
+
201
+ - `overwrite_output_dir`: False
202
+ - `do_predict`: False
203
+ - `prediction_loss_only`: True
204
+ - `per_device_train_batch_size`: 64
205
+ - `per_device_eval_batch_size`: 64
206
+ - `per_gpu_train_batch_size`: None
207
+ - `per_gpu_eval_batch_size`: None
208
+ - `gradient_accumulation_steps`: 1
209
+ - `eval_accumulation_steps`: None
210
+ - `learning_rate`: 5e-05
211
+ - `weight_decay`: 0.0
212
+ - `adam_beta1`: 0.9
213
+ - `adam_beta2`: 0.999
214
+ - `adam_epsilon`: 1e-08
215
+ - `max_grad_norm`: 1.0
216
+ - `num_train_epochs`: 4
217
+ - `max_steps`: -1
218
+ - `lr_scheduler_type`: linear
219
+ - `lr_scheduler_kwargs`: {}
220
+ - `warmup_ratio`: 0.1
221
+ - `warmup_steps`: 0
222
+ - `log_level`: passive
223
+ - `log_level_replica`: warning
224
+ - `log_on_each_node`: True
225
+ - `logging_nan_inf_filter`: True
226
+ - `save_safetensors`: True
227
+ - `save_on_each_node`: False
228
+ - `save_only_model`: False
229
+ - `no_cuda`: False
230
+ - `use_cpu`: False
231
+ - `use_mps_device`: False
232
+ - `seed`: 42
233
+ - `data_seed`: None
234
+ - `jit_mode_eval`: False
235
+ - `use_ipex`: False
236
+ - `bf16`: False
237
+ - `fp16`: False
238
+ - `fp16_opt_level`: O1
239
+ - `half_precision_backend`: auto
240
+ - `bf16_full_eval`: False
241
+ - `fp16_full_eval`: False
242
+ - `tf32`: None
243
+ - `local_rank`: 0
244
+ - `ddp_backend`: None
245
+ - `tpu_num_cores`: None
246
+ - `tpu_metrics_debug`: False
247
+ - `debug`: []
248
+ - `dataloader_drop_last`: False
249
+ - `dataloader_num_workers`: 0
250
+ - `dataloader_prefetch_factor`: None
251
+ - `past_index`: -1
252
+ - `disable_tqdm`: False
253
+ - `remove_unused_columns`: True
254
+ - `label_names`: None
255
+ - `load_best_model_at_end`: False
256
+ - `ignore_data_skip`: False
257
+ - `fsdp`: []
258
+ - `fsdp_min_num_params`: 0
259
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
260
+ - `fsdp_transformer_layer_cls_to_wrap`: None
261
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
262
+ - `deepspeed`: None
263
+ - `label_smoothing_factor`: 0.0
264
+ - `optim`: adamw_torch
265
+ - `optim_args`: None
266
+ - `adafactor`: False
267
+ - `group_by_length`: False
268
+ - `length_column_name`: length
269
+ - `ddp_find_unused_parameters`: None
270
+ - `ddp_bucket_cap_mb`: None
271
+ - `ddp_broadcast_buffers`: False
272
+ - `dataloader_pin_memory`: True
273
+ - `dataloader_persistent_workers`: False
274
+ - `skip_memory_metrics`: True
275
+ - `use_legacy_prediction_loop`: False
276
+ - `push_to_hub`: False
277
+ - `resume_from_checkpoint`: None
278
+ - `hub_model_id`: None
279
+ - `hub_strategy`: every_save
280
+ - `hub_private_repo`: False
281
+ - `hub_always_push`: False
282
+ - `gradient_checkpointing`: False
283
+ - `gradient_checkpointing_kwargs`: None
284
+ - `include_inputs_for_metrics`: False
285
+ - `fp16_backend`: auto
286
+ - `push_to_hub_model_id`: None
287
+ - `push_to_hub_organization`: None
288
+ - `mp_parameters`:
289
+ - `auto_find_batch_size`: False
290
+ - `full_determinism`: False
291
+ - `torchdynamo`: None
292
+ - `ray_scope`: last
293
+ - `ddp_timeout`: 1800
294
+ - `torch_compile`: False
295
+ - `torch_compile_backend`: None
296
+ - `torch_compile_mode`: None
297
+ - `dispatch_batches`: None
298
+ - `split_batches`: None
299
+ - `include_tokens_per_second`: False
300
+ - `include_num_input_tokens_seen`: False
301
+ - `neftune_noise_alpha`: None
302
+ - `optim_target_modules`: None
303
+ - `batch_sampler`: no_duplicates
304
+ - `multi_dataset_batch_sampler`: proportional
305
+
306
+ </details>
307
+
308
+ ### Training Logs
309
+ | Epoch | Step | Training Loss | loss |
310
+ |:------:|:-----:|:-------------:|:------:|
311
+ | 0.1294 | 1000 | 0.9208 | 0.7448 |
312
+ | 0.2589 | 2000 | 0.7095 | 0.6462 |
313
+ | 0.3883 | 3000 | 0.6415 | 0.6199 |
314
+ | 0.5177 | 4000 | 0.6125 | 0.5940 |
315
+ | 0.6472 | 5000 | 0.5935 | 0.5672 |
316
+ | 0.7766 | 6000 | 0.5748 | 0.5550 |
317
+ | 0.9060 | 7000 | 0.5654 | 0.5506 |
318
+ | 1.0355 | 8000 | 0.5524 | 0.5376 |
319
+ | 1.1649 | 9000 | 0.5386 | 0.5319 |
320
+ | 1.2943 | 10000 | 0.5192 | 0.5361 |
321
+ | 1.4238 | 11000 | 0.4863 | 0.5304 |
322
+ | 1.5532 | 12000 | 0.4687 | 0.5278 |
323
+ | 1.6826 | 13000 | 0.4586 | 0.5305 |
324
+ | 1.8121 | 14000 | 0.4474 | 0.5222 |
325
+ | 1.9415 | 15000 | 0.4447 | 0.5237 |
326
+ | 2.0709 | 16000 | 0.434 | 0.5172 |
327
+ | 2.2004 | 17000 | 0.4243 | 0.5235 |
328
+ | 2.3298 | 18000 | 0.398 | 0.5224 |
329
+ | 2.4592 | 19000 | 0.3747 | 0.5344 |
330
+ | 2.5887 | 20000 | 0.3669 | 0.5301 |
331
+ | 2.7181 | 21000 | 0.3583 | 0.5406 |
332
+ | 2.8475 | 22000 | 0.3496 | 0.5354 |
333
+ | 2.9770 | 23000 | 0.3527 | 0.5324 |
334
+ | 3.1064 | 24000 | 0.3419 | 0.5299 |
335
+ | 3.2358 | 25000 | 0.3358 | 0.5456 |
336
+ | 3.3653 | 26000 | 0.3096 | 0.5562 |
337
+ | 3.4947 | 27000 | 0.2964 | 0.5644 |
338
+ | 3.6241 | 28000 | 0.2998 | 0.5565 |
339
+ | 3.7536 | 29000 | 0.2906 | 0.5590 |
340
+ | 3.8830 | 30000 | 0.2923 | 0.5564 |
341
+
342
+
343
+ ### Framework Versions
344
+ - Python: 3.10.6
345
+ - Sentence Transformers: 3.0.1
346
+ - Transformers: 4.39.3
347
+ - PyTorch: 2.2.2+cu118
348
+ - Accelerate: 0.28.0
349
+ - Datasets: 2.20.0
350
+ - Tokenizers: 0.15.2
351
+
352
+ ## Citation
353
+
354
+ ### BibTeX
355
+
356
+ #### Sentence Transformers and SoftmaxLoss
357
+ ```bibtex
358
+ @inproceedings{reimers-2019-sentence-bert,
359
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
360
+ author = "Reimers, Nils and Gurevych, Iryna",
361
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
362
+ month = "11",
363
+ year = "2019",
364
+ publisher = "Association for Computational Linguistics",
365
+ url = "https://arxiv.org/abs/1908.10084",
366
+ }
367
+ ```
368
+
369
+ <!--
370
+ ## Glossary
371
+
372
+ *Clearly define terms in order to be accessible across audiences.*
373
+ -->
374
+
375
+ <!--
376
+ ## Model Card Authors
377
+
378
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
379
+ -->
380
+
381
+ <!--
382
+ ## Model Card Contact
383
+
384
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
385
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.2.2+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cfce87eda1ce3ab06d74fb602042102c5c54aba6c2caf57195afd5b50ded566
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff