--- license: mit datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - ca - ro - gl - it - pt - es base_model: - haoranxu/X-ALMA-13B-Pretrain --- [X-ALMA](https://arxiv.org/pdf/2410.03115) builds upon [ALMA-R](https://arxiv.org/pdf/2401.08417) by expanding support from 6 to 50 languages. It utilizes a plug-and-play architecture with language-specific modules, complemented by a carefully designed training recipe. This release includes the **language-specific X-ALMA LoRA module and a merged model that supports the languages in Group 2: English (en), Catalan (ca), Romanian (ro), Galician (gl), Italian (it), Portuguese (pt), and Spanish (es)**. ``` @misc{xu2024xalmaplugplay, title={X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale}, author={Haoran Xu and Kenton Murray and Philipp Koehn and Hieu Hoang and Akiko Eriguchi and Huda Khayrallah}, year={2024}, eprint={2410.03115}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.03115}, } ``` All X-ALMA checkpoints are released at huggingface: | Models | Model Link | Description | |:-------------:|:---------------:|:---------------:| | X-ALMA | [haoranxu/X-ALMA]([https://huggingface.co/haoranxu/ALMA-7B](https://huggingface.co/haoranxu/X-ALMA)) | X-ALMA model with all its modules | | X-ALMA-13B-Pretrain | [haoranxu/X-ALMA-13B-Pretrain](https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain) | X-ALMA 13B multilingual pre-trained base model | | X-ALMA-Group1 | [haoranxu/X-ALMA-13B-Group1](https://huggingface.co/haoranxu/X-ALMA-13B-Group1) | X-ALMA group1 specific module and the merged model | | X-ALMA-Group2 | [haoranxu/X-ALMA-13B-Group2](https://huggingface.co/haoranxu/X-ALMA-13B-Group2) | X-ALMA group2 specific module and the merged model | | X-ALMA-Group3 | [haoranxu/X-ALMA-13B-Group3](https://huggingface.co/haoranxu/X-ALMA-13B-Group3) | X-ALMA group3 specific module and the merged model | | X-ALMA-Group4 | [haoranxu/X-ALMA-13B-Group4](https://huggingface.co/haoranxu/X-ALMA-13B-Group4) | X-ALMA group4 specific module and the merged model | | X-ALMA-Group5 | [haoranxu/X-ALMA-13B-Group5](https://huggingface.co/haoranxu/X-ALMA-13B-Group5) | X-ALMA group5 specific module and the merged model | | X-ALMA-Group6 | [haoranxu/X-ALMA-13B-Group6](https://huggingface.co/haoranxu/X-ALMA-13B-Group6) | X-ALMA group6 specific module and the merged model | | X-ALMA-Group7 | [haoranxu/X-ALMA-13B-Group7](https://huggingface.co/haoranxu/X-ALMA-13B-Group7) | X-ALMA group7 specific module and the merged model | | X-ALMA-Group8 | [haoranxu/X-ALMA-13B-Group8](https://huggingface.co/haoranxu/X-ALMA-13B-Group8) | X-ALMA group8 specific module and the merged model | ## A quick start: There are three ways to load X-ALMA for translation. An example of translating "我爱机器翻译。" into English (X-ALMA should also able to do multilingual open-ended QA). **The first way**: loading the merged model where the language-specific module has been merged into the base model **(Recommended)**: ``` import torch from transformers import AutoModelForCausalLM from transformers import AutoTokenizer from peft import PeftModel GROUP2LANG = { 1: ["da", "nl", "de", "is", "no", "sv", "af"], 2: ["ca", "ro", "gl", "it", "pt", "es"], 3: ["bg", "mk", "sr", "uk", "ru"], 4: ["id", "ms", "th", "vi", "mg", "fr"], 5: ["hu", "el", "cs", "pl", "lt", "lv"], 6: ["ka", "zh", "ja", "ko", "fi", "et"], 7: ["gu", "hi", "mr", "ne", "ur"], 8: ["az", "kk", "ky", "tr", "uz", "ar", "he", "fa"], } LANG2GROUP = {lang: str(group) for group, langs in GROUP2LANG.items() for lang in langs} group_id = LANG2GROUP["zh"] model = AutoModelForCausalLM.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left') # Add the source sentence into the prompt template prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:" # X-ALMA needs chat template but ALMA and ALMA-R don't need it. chat_style_prompt = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template(chat_style_prompt, tokenize=False, add_generation_prompt=True) input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda() # Translation with torch.no_grad(): generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(outputs) ``` **The second way**: loading the base model and language-specific module **(Recommended)**: ``` model = AutoModelForCausalLM.from_pretrained("haoranxu/X-ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto") model = PeftModel.from_pretrained(model, f"haoranxu/X-ALMA-13B-Group{group_id}") tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left') ``` **The third way**: loading the base model with all language-specific modules like MoE: (Require large GPU memory) ``` from modeling_xalma import XALMAForCausalLM model = XALMAForCausalLM.from_pretrained("haoranxu/X-ALMA", torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("haoranxu/X-ALMA", padding_side='left') # Add `lang="zh"`: specify the language to instruct the model on which group to use for the third loading method during generation. generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9, lang="zh") ```