--- base_model: openai/clip-vit-base-patch32 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: document-spoof-clip results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9857142857142858 --- # document-spoof-clip This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0225 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8421 | 4 | 0.5305 | 0.8429 | | No log | 1.8947 | 9 | 0.1707 | 0.9286 | | 0.6268 | 2.9474 | 14 | 0.3507 | 0.8429 | | 0.6268 | 4.0 | 19 | 0.4707 | 0.8 | | 0.2881 | 4.8421 | 23 | 0.1337 | 0.9286 | | 0.2881 | 5.8947 | 28 | 0.1293 | 0.9286 | | 0.2349 | 6.9474 | 33 | 0.0565 | 0.9714 | | 0.2349 | 8.0 | 38 | 0.0676 | 0.9571 | | 0.0907 | 8.8421 | 42 | 0.3071 | 0.9 | | 0.0907 | 9.8947 | 47 | 0.1462 | 0.9714 | | 0.1203 | 10.9474 | 52 | 0.0761 | 0.9714 | | 0.1203 | 12.0 | 57 | 0.0808 | 0.9571 | | 0.0715 | 12.8421 | 61 | 0.0204 | 0.9857 | | 0.0715 | 13.8947 | 66 | 0.0210 | 0.9857 | | 0.031 | 14.9474 | 71 | 0.0274 | 0.9714 | | 0.031 | 16.0 | 76 | 0.0448 | 0.9857 | | 0.0655 | 16.8421 | 80 | 0.0225 | 0.9857 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1