psinger commited on
Commit
6894f7c
1 Parent(s): 8778e6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -12
README.md CHANGED
@@ -27,6 +27,7 @@ To use the model with the `transformers` library on a machine with GPUs, first m
27
 
28
  ```bash
29
  pip install transformers==4.29.2
 
30
  pip install accelerate==0.19.0
31
  pip install torch==2.0.0
32
  pip install einops==0.6.1
@@ -36,12 +37,13 @@ pip install einops==0.6.1
36
  import torch
37
  from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
38
 
 
 
 
39
  quantization_config = BitsAndBytesConfig(
40
  load_in_8bit=True,
41
  llm_int8_threshold=3.0,
42
  )
43
-
44
- model_kwargs = {}
45
  model_kwargs["quantization_config"] = quantization_config
46
 
47
  tokenizer = AutoTokenizer.from_pretrained(
@@ -183,16 +185,6 @@ RWForCausalLM(
183
 
184
  This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
185
 
186
-
187
- ## Model Validation
188
-
189
- Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
190
-
191
- ```bash
192
- CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=psinger/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1 --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
193
- ```
194
-
195
-
196
  ## Disclaimer
197
 
198
  Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
 
27
 
28
  ```bash
29
  pip install transformers==4.29.2
30
+ pip install bitsandbytes==0.39.0
31
  pip install accelerate==0.19.0
32
  pip install torch==2.0.0
33
  pip install einops==0.6.1
 
37
  import torch
38
  from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
39
 
40
+ model_kwargs = {}
41
+
42
+ # optional quantization
43
  quantization_config = BitsAndBytesConfig(
44
  load_in_8bit=True,
45
  llm_int8_threshold=3.0,
46
  )
 
 
47
  model_kwargs["quantization_config"] = quantization_config
48
 
49
  tokenizer = AutoTokenizer.from_pretrained(
 
185
 
186
  This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
187
 
 
 
 
 
 
 
 
 
 
 
188
  ## Disclaimer
189
 
190
  Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.