Update README.md
Browse files
README.md
CHANGED
@@ -27,6 +27,7 @@ To use the model with the `transformers` library on a machine with GPUs, first m
|
|
27 |
|
28 |
```bash
|
29 |
pip install transformers==4.29.2
|
|
|
30 |
pip install accelerate==0.19.0
|
31 |
pip install torch==2.0.0
|
32 |
pip install einops==0.6.1
|
@@ -36,12 +37,13 @@ pip install einops==0.6.1
|
|
36 |
import torch
|
37 |
from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
|
38 |
|
|
|
|
|
|
|
39 |
quantization_config = BitsAndBytesConfig(
|
40 |
load_in_8bit=True,
|
41 |
llm_int8_threshold=3.0,
|
42 |
)
|
43 |
-
|
44 |
-
model_kwargs = {}
|
45 |
model_kwargs["quantization_config"] = quantization_config
|
46 |
|
47 |
tokenizer = AutoTokenizer.from_pretrained(
|
@@ -183,16 +185,6 @@ RWForCausalLM(
|
|
183 |
|
184 |
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
185 |
|
186 |
-
|
187 |
-
## Model Validation
|
188 |
-
|
189 |
-
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
190 |
-
|
191 |
-
```bash
|
192 |
-
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=psinger/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1 --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
|
193 |
-
```
|
194 |
-
|
195 |
-
|
196 |
## Disclaimer
|
197 |
|
198 |
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|
|
|
27 |
|
28 |
```bash
|
29 |
pip install transformers==4.29.2
|
30 |
+
pip install bitsandbytes==0.39.0
|
31 |
pip install accelerate==0.19.0
|
32 |
pip install torch==2.0.0
|
33 |
pip install einops==0.6.1
|
|
|
37 |
import torch
|
38 |
from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
|
39 |
|
40 |
+
model_kwargs = {}
|
41 |
+
|
42 |
+
# optional quantization
|
43 |
quantization_config = BitsAndBytesConfig(
|
44 |
load_in_8bit=True,
|
45 |
llm_int8_threshold=3.0,
|
46 |
)
|
|
|
|
|
47 |
model_kwargs["quantization_config"] = quantization_config
|
48 |
|
49 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
185 |
|
186 |
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
## Disclaimer
|
189 |
|
190 |
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
|