import torch import torch.nn as nn from transformers import ( BertPreTrainedModel, BertModel, AutoModelForSequenceClassification, BertConfig, ) from transformers.modeling_outputs import SequenceClassifierOutput class BertForRelationExtraction(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = len(config.label2id) self.config = config self.bert = BertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.layer_norm = nn.LayerNorm(2 * config.hidden_size) self.classifier = nn.Linear(2 * config.hidden_size, self.num_labels) self.post_init() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) e1_start = torch.where(input_ids == self.config.e1_start_token_id) e2_start = torch.where(input_ids == self.config.e2_start_token_id) e1_hidden_states = sequence_output[e1_start[0], e1_start[1]] e2_hidden_states = sequence_output[e2_start[0], e2_start[1]] h = torch.cat((e1_hidden_states, e2_hidden_states), dim=-1) logits = self.classifier(self.layer_norm(h)) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] # Need to check outputs shape return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )