File size: 1,839 Bytes
b39a7ab
 
 
 
4a6e749
 
b39a7ab
 
 
 
 
 
 
 
4a6e749
b39a7ab
 
 
 
 
4a6e749
b39a7ab
4a6e749
b39a7ab
 
 
7d74ea5
4a6e749
91ef97b
7d74ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
language:
- en
- hi
- multilingual
license: cc-by-4.0
tags:
- translation
- opus-mt-tc
model-index:
- name: opus-mt-tc-base-en-hi
  results:
  - task:
      type: translation
      name: Translation eng-hin
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: eng-hin
    metrics:
    - type: bleu
      value: 22.2
      name: BLEU
---

# Opus Tatoeba English-Hindi

*This model was obtained by running the script [convert_marian_to_pytorch.py](https://github.com/huggingface/transformers/blob/master/src/transformers/models/marian/convert_marian_to_pytorch.py). The original models were trained by [J�rg Tiedemann](https://blogs.helsinki.fi/tiedeman/) using the [MarianNMT](https://marian-nmt.github.io/) library. See all available `MarianMTModel` models on the profile of the [Helsinki NLP](https://huggingface.co/Helsinki-NLP) group.*

* dataset: opus+bt
* model: transformer-align
* source language(s): eng
* target language(s): hin
* model: transformer-align
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download: [opus+bt-2021-04-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hin/opus+bt-2021-04-10.zip)
* test set translations: [opus+bt-2021-04-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hin/opus+bt-2021-04-10.test.txt)
* test set scores: [opus+bt-2021-04-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hin/opus+bt-2021-04-10.eval.txt)

## Benchmarks

| testset | BLEU  | chr-F | #sent | #words | BP |
|---------|-------|-------|-------|--------|----|
| newsdev2014.eng-hin 	| 13.9 	| 0.421 	| 520 	| 9538 	| 1.000 |
| newstest2014-hien.eng-hin 	| 17.4 	| 0.442 	| 2507 	| 60878 	| 0.989 |
| Tatoeba-test.eng-hin 	| 22.2 	| 0.485 	| 5000 	| 32904 	| 1.000 |
| tico19-test.eng-hin 	| 30.6 	| 0.539 	| 2100 	| 62738 	| 0.988 |