--- license: apache-2.0 tags: - vision widget: - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: playing music, playing sports example_title: Cat & Dog pipeline_tag: zero-shot-image-classification library_name: transformers --- # SigLIP (shape-optimized model) SigLIP model with SoViT backbone pre-trained on multilingual corpus at resolution 256. It was introduced in the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Zhai et al. and first released in [this repository](https://github.com/google-research/big_vision). This model has the SoViT-400m architecture, which is the shape-optimized version as presented in [Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design](https://arxiv.org/abs/2305.13035) by Alabdulmohsin et al. Disclaimer: The team releasing SigLIP did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SigLIP is [CLIP](https://huggingface.co/docs/transformers/model_doc/clip), a multimodal model, with a better loss function. The sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. This allows further scaling up the batch size, while also performing better at smaller batch sizes. A TLDR of SigLIP by one of the authors can be found [here](https://twitter.com/giffmana/status/1692641733459267713). ## Intended uses & limitations You can use the raw model for tasks like zero-shot image classification and image-text retrieval. See the [model hub](https://huggingface.co/models?search=google/siglip) to look for other versions on a task that interests you. ### How to use Here is how to use this model to perform zero-shot image classification: ```python from PIL import Image import requests from transformers import AutoProcessor, AutoModel import torch model = AutoModel.from_pretrained("google/siglip-so400m-patch16-256-i18n") processor = AutoProcessor.from_pretrained("google/siglip-so400m-patch16-256-i18n") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["a photo of 2 cats", "a photo of 2 dogs"] inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = torch.sigmoid(logits_per_image) # these are the probabilities print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") ``` Alternatively, one can leverage the pipeline API which abstracts away the complexity for the user: ```python from transformers import pipeline from PIL import Image import requests # load pipe image_classifier = pipeline(task="zero-shot-image-classification", model="google/siglip-so400m-patch16-256-i18n") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference outputs = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"]) outputs = [{"score": round(output["score"], 4), "label": output["label"] } for output in outputs] print(outputs) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/siglip.html#). ## Training procedure ### Training data SigLIP is pre-trained on the WebLI dataset [(Chen et al., 2023)](https://arxiv.org/abs/2209.06794). ### Preprocessing Images are resized/rescaled to the same resolution (384x384) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). Texts are tokenized and padded to the same length (64 tokens). ### Compute The model was trained on 16 TPU-v4 chips for three days. ## Evaluation results Evaluation of SigLIP compared to CLIP is shown below (taken from the paper). drawing ### BibTeX entry and citation info ```bibtex @misc{zhai2023sigmoid, title={Sigmoid Loss for Language Image Pre-Training}, author={Xiaohua Zhai and Basil Mustafa and Alexander Kolesnikov and Lucas Beyer}, year={2023}, eprint={2303.15343}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```