Zero-Shot Image Classification
Transformers
Safetensors
siglip
vision
Inference Endpoints
File size: 4,445 Bytes
5d67b24
 
 
 
 
365d321
 
5d67b24
 
365d321
 
5d67b24
 
 
 
a0d740a
5d67b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365d321
 
5d67b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365d321
5d67b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365d321
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
tags:
- vision
widget:
- src: >-
    https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
  candidate_labels: playing music, playing sports
  example_title: Cat & Dog
pipeline_tag: zero-shot-image-classification
library_name: transformers
---

# SigLIP (shape-optimized model) 

SigLIP model with SoViT backbone pre-trained on multilingual corpus at resolution 256. It was introduced in the paper [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Zhai et al. and first released in [this repository](https://github.com/google-research/big_vision).

This model has the SoViT-400m architecture, which is the shape-optimized version as presented in [Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design](https://arxiv.org/abs/2305.13035) by Alabdulmohsin et al.

Disclaimer: The team releasing SigLIP did not write a model card for this model so this model card has been written by the Hugging Face team.

## Model description

SigLIP is [CLIP](https://huggingface.co/docs/transformers/model_doc/clip), a multimodal model, with a better loss function. The sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. This allows further scaling up the batch size, while also performing better at smaller batch sizes.

A TLDR of SigLIP by one of the authors can be found [here](https://twitter.com/giffmana/status/1692641733459267713).

## Intended uses & limitations

You can use the raw model for tasks like zero-shot image classification and image-text retrieval. See the [model hub](https://huggingface.co/models?search=google/siglip) to look for
other versions on a task that interests you.

### How to use

Here is how to use this model to perform zero-shot image classification:

```python
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModel
import torch

model = AutoModel.from_pretrained("google/siglip-so400m-patch16-256-i18n")
processor = AutoProcessor.from_pretrained("google/siglip-so400m-patch16-256-i18n")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

texts = ["a photo of 2 cats", "a photo of 2 dogs"]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)

logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image) # these are the probabilities
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
```

Alternatively, one can leverage the pipeline API which abstracts away the complexity for the user:

```python
from transformers import pipeline
from PIL import Image
import requests

# load pipe
image_classifier = pipeline(task="zero-shot-image-classification", model="google/siglip-so400m-patch16-256-i18n")

# load image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

# inference
outputs = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"])
outputs = [{"score": round(output["score"], 4), "label": output["label"] } for output in outputs]
print(outputs)
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/siglip.html#).

## Training procedure

### Training data

SigLIP is pre-trained on the WebLI dataset [(Chen et al., 2023)](https://arxiv.org/abs/2209.06794).

### Preprocessing

Images are resized/rescaled to the same resolution (384x384) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5).

Texts are tokenized and padded to the same length (64 tokens).

### Compute

The model was trained on 16 TPU-v4 chips for three days.

## Evaluation results

Evaluation of SigLIP compared to CLIP is shown below (taken from the paper).

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/siglip_table.jpeg"
alt="drawing" width="600"/>

### BibTeX entry and citation info

```bibtex
@misc{zhai2023sigmoid,
      title={Sigmoid Loss for Language Image Pre-Training}, 
      author={Xiaohua Zhai and Basil Mustafa and Alexander Kolesnikov and Lucas Beyer},
      year={2023},
      eprint={2303.15343},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```