gonglinyuan
commited on
Commit
•
c1d859a
1
Parent(s):
d684cbc
Upload FairseqT5ForConditionalGeneration
Browse files- config.json +31 -0
- configuration_fairseq_t5.py +53 -0
- generation_config.json +7 -0
- modeling_fairseq_t5.py +1585 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"FairseqT5ForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_fairseq_t5.FairseqT5Config",
|
7 |
+
"AutoModelForSeq2SeqLM": "modeling_fairseq_t5.FairseqT5ForConditionalGeneration"
|
8 |
+
},
|
9 |
+
"d_ff": 3072,
|
10 |
+
"d_kv": 64,
|
11 |
+
"d_model": 768,
|
12 |
+
"decoder_start_token_id": 2,
|
13 |
+
"dropout_rate": 0.1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"feed_forward_proj": "relu",
|
16 |
+
"initializer_factor": 1.0,
|
17 |
+
"is_encoder_decoder": true,
|
18 |
+
"layer_norm_epsilon": 1e-05,
|
19 |
+
"max_positions": 1024,
|
20 |
+
"model_type": "fairseq_t5",
|
21 |
+
"num_decoder_layers": 12,
|
22 |
+
"num_heads": 12,
|
23 |
+
"num_layers": 12,
|
24 |
+
"pad_token_id": 1,
|
25 |
+
"relative_attention_max_distance": 128,
|
26 |
+
"relative_attention_num_buckets": 32,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.28.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 64512
|
31 |
+
}
|
configuration_fairseq_t5.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class FairseqT5Config(PretrainedConfig):
|
5 |
+
model_type = "fairseq_t5"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
vocab_size=64518,
|
12 |
+
d_model=768,
|
13 |
+
d_kv=64,
|
14 |
+
d_ff=3072,
|
15 |
+
num_layers=6,
|
16 |
+
num_decoder_layers=None,
|
17 |
+
num_heads=8,
|
18 |
+
relative_attention_num_buckets=32,
|
19 |
+
relative_attention_max_distance=128,
|
20 |
+
max_positions=1024,
|
21 |
+
dropout_rate=0.1,
|
22 |
+
layer_norm_epsilon=1e-6,
|
23 |
+
initializer_factor=1.0,
|
24 |
+
feed_forward_proj="relu",
|
25 |
+
is_encoder_decoder=True,
|
26 |
+
use_cache=True,
|
27 |
+
pad_token_id=1,
|
28 |
+
eos_token_id=2,
|
29 |
+
**kwargs
|
30 |
+
):
|
31 |
+
self.vocab_size = vocab_size
|
32 |
+
self.d_model = d_model
|
33 |
+
self.d_kv = d_kv
|
34 |
+
self.d_ff = d_ff
|
35 |
+
self.num_layers = num_layers
|
36 |
+
self.num_decoder_layers = (
|
37 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
38 |
+
) # default = symmetry
|
39 |
+
self.num_heads = num_heads
|
40 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
41 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
42 |
+
self.max_positions = max_positions
|
43 |
+
self.dropout_rate = dropout_rate
|
44 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
45 |
+
self.initializer_factor = initializer_factor
|
46 |
+
self.feed_forward_proj = feed_forward_proj
|
47 |
+
self.use_cache = use_cache
|
48 |
+
super().__init__(
|
49 |
+
pad_token_id=pad_token_id,
|
50 |
+
eos_token_id=eos_token_id,
|
51 |
+
is_encoder_decoder=is_encoder_decoder,
|
52 |
+
**kwargs,
|
53 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 2,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.28.1"
|
7 |
+
}
|
modeling_fairseq_t5.py
ADDED
@@ -0,0 +1,1585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch import Tensor
|
8 |
+
from torch.utils.checkpoint import checkpoint
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.file_utils import DUMMY_INPUTS, DUMMY_MASK, is_torch_fx_proxy
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
BaseModelOutput,
|
13 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
14 |
+
Seq2SeqLMOutput,
|
15 |
+
Seq2SeqModelOutput,
|
16 |
+
)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
20 |
+
|
21 |
+
from .configuration_fairseq_t5 import FairseqT5Config
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
def make_positions(tensor, padding_idx: int, onnx_trace: bool = False):
|
27 |
+
"""Replace non-padding symbols with their position numbers.
|
28 |
+
Position numbers begin at padding_idx+1. Padding symbols are ignored.
|
29 |
+
"""
|
30 |
+
# The series of casts and type-conversions here are carefully
|
31 |
+
# balanced to both work with ONNX export and XLA. In particular XLA
|
32 |
+
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
|
33 |
+
# how to handle the dtype kwarg in cumsum.
|
34 |
+
mask = tensor.ne(padding_idx).int()
|
35 |
+
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
|
36 |
+
|
37 |
+
|
38 |
+
class LearnedPositionalEmbedding(nn.Embedding):
|
39 |
+
"""
|
40 |
+
This module learns positional embeddings up to a fixed maximum size.
|
41 |
+
Padding ids are ignored by either offsetting based on padding_idx
|
42 |
+
or by setting padding_idx to None and ensuring that the appropriate
|
43 |
+
position ids are passed to the forward function.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
|
47 |
+
super().__init__(num_embeddings, embedding_dim, padding_idx)
|
48 |
+
self.onnx_trace = False
|
49 |
+
if self.padding_idx is not None:
|
50 |
+
self.max_positions = self.num_embeddings - self.padding_idx - 1
|
51 |
+
else:
|
52 |
+
self.max_positions = self.num_embeddings
|
53 |
+
|
54 |
+
def forward(
|
55 |
+
self,
|
56 |
+
input: Tensor,
|
57 |
+
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
|
58 |
+
positions: Optional[Tensor] = None,
|
59 |
+
offset=0,
|
60 |
+
):
|
61 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
62 |
+
assert (positions is None) or (
|
63 |
+
self.padding_idx is None
|
64 |
+
), "If positions is pre-computed then padding_idx should not be set."
|
65 |
+
|
66 |
+
if positions is None:
|
67 |
+
if incremental_state is not None:
|
68 |
+
# positions is the same for every token when decoding a single step
|
69 |
+
# Without the int() cast, it doesn't work in some cases when exporting to ONNX
|
70 |
+
positions = torch.zeros(
|
71 |
+
(1, 1), device=input.device, dtype=input.dtype
|
72 |
+
).fill_(int(self.padding_idx + input.size(1)))
|
73 |
+
else:
|
74 |
+
positions = make_positions(
|
75 |
+
input, self.padding_idx, onnx_trace=self.onnx_trace
|
76 |
+
)
|
77 |
+
if offset > 0 and positions.size(1) == 1:
|
78 |
+
positions = positions + offset
|
79 |
+
return nn.functional.embedding(
|
80 |
+
positions,
|
81 |
+
self.weight,
|
82 |
+
self.padding_idx,
|
83 |
+
self.max_norm,
|
84 |
+
self.norm_type,
|
85 |
+
self.scale_grad_by_freq,
|
86 |
+
self.sparse,
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def PositionalEmbedding(
|
91 |
+
num_embeddings: int,
|
92 |
+
embedding_dim: int,
|
93 |
+
padding_idx: int,
|
94 |
+
):
|
95 |
+
# if padding_idx is specified then offset the embedding ids by
|
96 |
+
# this index and adjust num_embeddings appropriately
|
97 |
+
# TODO: The right place for this offset would be inside
|
98 |
+
# LearnedPositionalEmbedding. Move this there for a cleaner implementation.
|
99 |
+
if padding_idx is not None:
|
100 |
+
num_embeddings = num_embeddings + padding_idx + 1
|
101 |
+
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
|
102 |
+
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
|
103 |
+
if padding_idx is not None:
|
104 |
+
nn.init.constant_(m.weight[padding_idx], 0)
|
105 |
+
return m
|
106 |
+
|
107 |
+
|
108 |
+
class T5LayerNorm(nn.Module):
|
109 |
+
def __init__(self, hidden_size, eps=1e-5):
|
110 |
+
"""
|
111 |
+
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
|
112 |
+
"""
|
113 |
+
super().__init__()
|
114 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
115 |
+
self.bias = nn.Parameter(torch.ones(hidden_size))
|
116 |
+
self.variance_epsilon = eps
|
117 |
+
|
118 |
+
def forward(self, hidden_states):
|
119 |
+
# layer norm should always be calculated in float32
|
120 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
121 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
122 |
+
|
123 |
+
# convert into half-precision if necessary
|
124 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
125 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
126 |
+
|
127 |
+
return self.weight * hidden_states + self.bias
|
128 |
+
|
129 |
+
|
130 |
+
def FST5LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
|
131 |
+
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
|
132 |
+
|
133 |
+
|
134 |
+
class T5DenseReluDense(nn.Module):
|
135 |
+
def __init__(self, config):
|
136 |
+
super().__init__()
|
137 |
+
if_bias = True
|
138 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=if_bias) #
|
139 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=if_bias) #
|
140 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
141 |
+
|
142 |
+
def forward(self, hidden_states):
|
143 |
+
hidden_states = self.wi(hidden_states)
|
144 |
+
hidden_states = nn.functional.relu(hidden_states)
|
145 |
+
hidden_states = self.dropout(hidden_states)
|
146 |
+
hidden_states = self.wo(hidden_states)
|
147 |
+
return hidden_states
|
148 |
+
|
149 |
+
|
150 |
+
class T5DenseGatedGeluDense(nn.Module):
|
151 |
+
def __init__(self, config):
|
152 |
+
super().__init__()
|
153 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
154 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
155 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
156 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
157 |
+
self.gelu_act = ACT2FN["gelu_new"]
|
158 |
+
|
159 |
+
def forward(self, hidden_states):
|
160 |
+
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
|
161 |
+
hidden_linear = self.wi_1(hidden_states)
|
162 |
+
hidden_states = hidden_gelu * hidden_linear
|
163 |
+
hidden_states = self.dropout(hidden_states)
|
164 |
+
hidden_states = self.wo(hidden_states)
|
165 |
+
return hidden_states
|
166 |
+
|
167 |
+
|
168 |
+
class T5LayerFF(nn.Module):
|
169 |
+
def __init__(self, config, normalize_before=False):
|
170 |
+
super().__init__()
|
171 |
+
if config.feed_forward_proj == "relu":
|
172 |
+
self.DenseReluDense = T5DenseReluDense(config)
|
173 |
+
elif config.feed_forward_proj == "gated-gelu":
|
174 |
+
self.DenseReluDense = T5DenseGatedGeluDense(config)
|
175 |
+
else:
|
176 |
+
raise ValueError(
|
177 |
+
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
|
178 |
+
)
|
179 |
+
|
180 |
+
self.layer_norm = FST5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
181 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
182 |
+
|
183 |
+
self.normalize_before = normalize_before
|
184 |
+
|
185 |
+
def forward(self, hidden_states):
|
186 |
+
if self.normalize_before:
|
187 |
+
forwarded_states = self.layer_norm(hidden_states)
|
188 |
+
else:
|
189 |
+
forwarded_states = hidden_states
|
190 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
191 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
192 |
+
|
193 |
+
if not self.normalize_before:
|
194 |
+
hidden_states = self.layer_norm(hidden_states)
|
195 |
+
return hidden_states
|
196 |
+
|
197 |
+
|
198 |
+
class T5Attention(nn.Module):
|
199 |
+
def __init__(self, config: FairseqT5Config, has_relative_attention_bias=False):
|
200 |
+
super().__init__()
|
201 |
+
self.is_decoder = config.is_decoder
|
202 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
203 |
+
|
204 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
205 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
206 |
+
self.max_positions = config.max_positions
|
207 |
+
self.d_model = config.d_model
|
208 |
+
self.key_value_proj_dim = config.d_kv
|
209 |
+
self.n_heads = config.num_heads
|
210 |
+
self.dropout = config.dropout_rate
|
211 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
212 |
+
|
213 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
214 |
+
if_bias = True
|
215 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=if_bias)
|
216 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=if_bias)
|
217 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=if_bias)
|
218 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=if_bias)
|
219 |
+
|
220 |
+
if self.has_relative_attention_bias:
|
221 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
222 |
+
self.pruned_heads = set()
|
223 |
+
self.gradient_checkpointing = getattr(config, "gradient_checkpointing", False)
|
224 |
+
|
225 |
+
# rp from fs
|
226 |
+
relative_position = (
|
227 |
+
torch.arange(self.max_positions, dtype=torch.long)[None, :]
|
228 |
+
- torch.arange(self.max_positions, dtype=torch.long)[:, None]
|
229 |
+
)
|
230 |
+
self.rp_bucket = self.relative_position_bucket(
|
231 |
+
relative_position,
|
232 |
+
num_buckets=self.relative_attention_num_buckets,
|
233 |
+
max_distance=self.relative_attention_max_distance
|
234 |
+
)
|
235 |
+
self.rp_bucket -= self.rp_bucket.min()
|
236 |
+
|
237 |
+
self.head_dim = self.d_model // self.n_heads
|
238 |
+
self.scaling = self.head_dim ** -0.5
|
239 |
+
|
240 |
+
def prune_heads(self, heads):
|
241 |
+
if len(heads) == 0:
|
242 |
+
return
|
243 |
+
heads, index = find_pruneable_heads_and_indices(
|
244 |
+
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
245 |
+
)
|
246 |
+
# Prune linear layers
|
247 |
+
self.q = prune_linear_layer(self.q, index)
|
248 |
+
self.k = prune_linear_layer(self.k, index)
|
249 |
+
self.v = prune_linear_layer(self.v, index)
|
250 |
+
self.o = prune_linear_layer(self.o, index, dim=1)
|
251 |
+
# Update hyper params
|
252 |
+
self.n_heads = self.n_heads - len(heads)
|
253 |
+
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
254 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
255 |
+
|
256 |
+
@staticmethod
|
257 |
+
def relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
|
258 |
+
sign = torch.sign(relative_position)
|
259 |
+
num_buckets //= 2
|
260 |
+
n = torch.abs(relative_position)
|
261 |
+
|
262 |
+
# half of the buckets are for exact increments in positions
|
263 |
+
max_exact = num_buckets // 2
|
264 |
+
is_small = n < max_exact
|
265 |
+
max_bucket_val = num_buckets - 1 - max_exact
|
266 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
267 |
+
val_if_large = max_exact + torch.ceil(
|
268 |
+
torch.log(n.float() / max_exact)
|
269 |
+
/ math.log((max_distance - 1) / max_exact)
|
270 |
+
* max_bucket_val
|
271 |
+
).long()
|
272 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
273 |
+
ret = torch.where(is_small, n, val_if_large) * sign
|
274 |
+
return ret
|
275 |
+
|
276 |
+
def compute_bias(self, query_length, key_length):
|
277 |
+
relative_position_bucket = self.rp_bucket[:query_length, :key_length]
|
278 |
+
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
279 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
280 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
281 |
+
return values
|
282 |
+
|
283 |
+
def forward(
|
284 |
+
self,
|
285 |
+
hidden_states,
|
286 |
+
mask=None,
|
287 |
+
key_value_states=None,
|
288 |
+
position_bias=None,
|
289 |
+
past_key_value=None,
|
290 |
+
layer_head_mask=None,
|
291 |
+
query_length=None,
|
292 |
+
use_cache=False,
|
293 |
+
output_attentions=False,
|
294 |
+
key_padding_mask=None,
|
295 |
+
):
|
296 |
+
"""
|
297 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
298 |
+
"""
|
299 |
+
# Input is (batch_size, seq_length, dim)
|
300 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
301 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
302 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
303 |
+
|
304 |
+
int_seq_length = int(seq_length)
|
305 |
+
|
306 |
+
real_seq_length = seq_length
|
307 |
+
|
308 |
+
if past_key_value is not None:
|
309 |
+
assert (
|
310 |
+
len(past_key_value) == 2
|
311 |
+
), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states"
|
312 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
313 |
+
|
314 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
315 |
+
|
316 |
+
def shape(states):
|
317 |
+
"""projection"""
|
318 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
319 |
+
|
320 |
+
def unshape(states):
|
321 |
+
"""reshape"""
|
322 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
323 |
+
|
324 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
325 |
+
"""projects hidden states correctly to key/query states"""
|
326 |
+
if key_value_states is None:
|
327 |
+
# self-attn
|
328 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
329 |
+
hidden_states = shape(proj_layer(hidden_states))
|
330 |
+
elif past_key_value is None:
|
331 |
+
# cross-attn
|
332 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
333 |
+
hidden_states = shape(proj_layer(key_value_states))
|
334 |
+
|
335 |
+
if past_key_value is not None:
|
336 |
+
if key_value_states is None:
|
337 |
+
# self-attn
|
338 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
339 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
340 |
+
else:
|
341 |
+
# cross-attn
|
342 |
+
hidden_states = past_key_value
|
343 |
+
return hidden_states
|
344 |
+
|
345 |
+
# get query states
|
346 |
+
query_states = shape(self.q(hidden_states)) * self.scaling # (batch_size, n_heads, seq_length, dim_per_head)
|
347 |
+
|
348 |
+
# get key/value states
|
349 |
+
key_states = project(
|
350 |
+
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
|
351 |
+
)
|
352 |
+
value_states = project(
|
353 |
+
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
|
354 |
+
)
|
355 |
+
|
356 |
+
# compute scores
|
357 |
+
scores = torch.matmul(
|
358 |
+
query_states, key_states.transpose(3, 2)
|
359 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
360 |
+
|
361 |
+
if position_bias is None:
|
362 |
+
if not self.has_relative_attention_bias:
|
363 |
+
position_bias = torch.zeros(
|
364 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
365 |
+
)
|
366 |
+
if self.gradient_checkpointing and self.training:
|
367 |
+
position_bias.requires_grad = True
|
368 |
+
else:
|
369 |
+
position_bias = self.compute_bias(real_seq_length, key_length)
|
370 |
+
|
371 |
+
# if key and values are already calculated
|
372 |
+
# we want only the last query position bias
|
373 |
+
if past_key_value is not None:
|
374 |
+
position_bias = position_bias[:, :, -int_seq_length:, :]
|
375 |
+
|
376 |
+
if mask is not None:
|
377 |
+
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
378 |
+
|
379 |
+
scores += position_bias
|
380 |
+
|
381 |
+
if key_padding_mask is not None:
|
382 |
+
scores = scores.masked_fill(
|
383 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
|
384 |
+
float("-inf"),
|
385 |
+
)
|
386 |
+
|
387 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
388 |
+
scores
|
389 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
390 |
+
attn_weights = nn.functional.dropout(
|
391 |
+
attn_weights, p=self.dropout, training=self.training
|
392 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
393 |
+
|
394 |
+
# Mask heads if we want to
|
395 |
+
if layer_head_mask is not None:
|
396 |
+
attn_weights = attn_weights * layer_head_mask
|
397 |
+
|
398 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
|
399 |
+
attn_output = self.o(attn_output)
|
400 |
+
|
401 |
+
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
|
402 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
403 |
+
|
404 |
+
if output_attentions:
|
405 |
+
outputs = outputs + (attn_weights,)
|
406 |
+
return outputs
|
407 |
+
|
408 |
+
|
409 |
+
class T5LayerSelfAttention(nn.Module):
|
410 |
+
def __init__(self, config, has_relative_attention_bias=False, normalize_before=False):
|
411 |
+
super().__init__()
|
412 |
+
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
|
413 |
+
# self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
414 |
+
self.layer_norm = FST5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
415 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
416 |
+
self.normalize_before = normalize_before
|
417 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
418 |
+
|
419 |
+
def forward(
|
420 |
+
self,
|
421 |
+
hidden_states,
|
422 |
+
attention_mask=None,
|
423 |
+
position_bias=None,
|
424 |
+
layer_head_mask=None,
|
425 |
+
past_key_value=None,
|
426 |
+
use_cache=False,
|
427 |
+
output_attentions=False,
|
428 |
+
key_padding_mask=None,
|
429 |
+
):
|
430 |
+
if self.normalize_before:
|
431 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
432 |
+
else:
|
433 |
+
normed_hidden_states = hidden_states
|
434 |
+
|
435 |
+
attention_output = self.SelfAttention(
|
436 |
+
normed_hidden_states,
|
437 |
+
mask=attention_mask,
|
438 |
+
position_bias=position_bias,
|
439 |
+
layer_head_mask=layer_head_mask,
|
440 |
+
past_key_value=past_key_value,
|
441 |
+
use_cache=use_cache,
|
442 |
+
output_attentions=output_attentions,
|
443 |
+
key_padding_mask=key_padding_mask,
|
444 |
+
)
|
445 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
446 |
+
|
447 |
+
if not self.normalize_before:
|
448 |
+
hidden_states = self.layer_norm(hidden_states)
|
449 |
+
|
450 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
451 |
+
return outputs
|
452 |
+
|
453 |
+
|
454 |
+
class T5LayerCrossAttention(nn.Module):
|
455 |
+
def __init__(self, config, normalize_before=False):
|
456 |
+
super().__init__()
|
457 |
+
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
458 |
+
# self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
459 |
+
self.layer_norm = FST5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
460 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
461 |
+
|
462 |
+
self.normalize_before = normalize_before
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
hidden_states,
|
467 |
+
key_value_states,
|
468 |
+
attention_mask=None,
|
469 |
+
position_bias=None,
|
470 |
+
layer_head_mask=None,
|
471 |
+
past_key_value=None,
|
472 |
+
use_cache=False,
|
473 |
+
query_length=None,
|
474 |
+
output_attentions=False,
|
475 |
+
):
|
476 |
+
if self.normalize_before:
|
477 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
478 |
+
else:
|
479 |
+
normed_hidden_states = hidden_states
|
480 |
+
|
481 |
+
attention_output = self.EncDecAttention(
|
482 |
+
normed_hidden_states,
|
483 |
+
mask=attention_mask,
|
484 |
+
key_value_states=key_value_states,
|
485 |
+
position_bias=position_bias,
|
486 |
+
layer_head_mask=layer_head_mask,
|
487 |
+
past_key_value=past_key_value,
|
488 |
+
use_cache=use_cache,
|
489 |
+
query_length=query_length,
|
490 |
+
output_attentions=output_attentions,
|
491 |
+
)
|
492 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
493 |
+
|
494 |
+
if not self.normalize_before:
|
495 |
+
layer_output = self.layer_norm(layer_output)
|
496 |
+
|
497 |
+
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
498 |
+
return outputs
|
499 |
+
|
500 |
+
|
501 |
+
class T5Block(nn.Module):
|
502 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
503 |
+
super().__init__()
|
504 |
+
self.is_decoder = config.is_decoder
|
505 |
+
self.layer = nn.ModuleList()
|
506 |
+
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
|
507 |
+
if self.is_decoder:
|
508 |
+
self.layer.append(T5LayerCrossAttention(config))
|
509 |
+
|
510 |
+
self.layer.append(T5LayerFF(config))
|
511 |
+
|
512 |
+
def forward(
|
513 |
+
self,
|
514 |
+
hidden_states,
|
515 |
+
attention_mask=None,
|
516 |
+
position_bias=None,
|
517 |
+
encoder_hidden_states=None,
|
518 |
+
encoder_attention_mask=None,
|
519 |
+
encoder_decoder_position_bias=None,
|
520 |
+
layer_head_mask=None,
|
521 |
+
cross_attn_layer_head_mask=None,
|
522 |
+
past_key_value=None,
|
523 |
+
use_cache=False,
|
524 |
+
output_attentions=False,
|
525 |
+
return_dict=True,
|
526 |
+
key_padding_mask=None,
|
527 |
+
):
|
528 |
+
|
529 |
+
if past_key_value is not None:
|
530 |
+
assert self.is_decoder, "Only decoder can use `past_key_values`"
|
531 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
532 |
+
|
533 |
+
if len(past_key_value) != expected_num_past_key_values:
|
534 |
+
raise ValueError(
|
535 |
+
f"There should be {expected_num_past_key_values} past states. "
|
536 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
537 |
+
f"Got {len(past_key_value)} past key / value states"
|
538 |
+
)
|
539 |
+
|
540 |
+
self_attn_past_key_value = past_key_value[:2]
|
541 |
+
cross_attn_past_key_value = past_key_value[2:]
|
542 |
+
else:
|
543 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
544 |
+
|
545 |
+
self_attention_outputs = self.layer[0](
|
546 |
+
hidden_states,
|
547 |
+
attention_mask=attention_mask,
|
548 |
+
position_bias=position_bias,
|
549 |
+
layer_head_mask=layer_head_mask,
|
550 |
+
past_key_value=self_attn_past_key_value,
|
551 |
+
use_cache=use_cache,
|
552 |
+
output_attentions=output_attentions,
|
553 |
+
key_padding_mask=key_padding_mask,
|
554 |
+
)
|
555 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
556 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
557 |
+
|
558 |
+
# clamp inf values to enable fp16 training
|
559 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
560 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
561 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
562 |
+
|
563 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
564 |
+
if do_cross_attention:
|
565 |
+
# the actual query length is unknown for cross attention
|
566 |
+
# if using past key value states. Need to inject it here
|
567 |
+
if present_key_value_state is not None:
|
568 |
+
query_length = present_key_value_state[0].shape[2]
|
569 |
+
else:
|
570 |
+
query_length = None
|
571 |
+
|
572 |
+
cross_attention_outputs = self.layer[1](
|
573 |
+
hidden_states,
|
574 |
+
key_value_states=encoder_hidden_states,
|
575 |
+
attention_mask=encoder_attention_mask,
|
576 |
+
position_bias=encoder_decoder_position_bias,
|
577 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
578 |
+
past_key_value=cross_attn_past_key_value,
|
579 |
+
query_length=query_length,
|
580 |
+
use_cache=use_cache,
|
581 |
+
output_attentions=output_attentions,
|
582 |
+
)
|
583 |
+
hidden_states = cross_attention_outputs[0]
|
584 |
+
|
585 |
+
# clamp inf values to enable fp16 training
|
586 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
587 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
588 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
589 |
+
|
590 |
+
# Combine self attn and cross attn key value states
|
591 |
+
if present_key_value_state is not None:
|
592 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
593 |
+
|
594 |
+
# Keep cross-attention outputs and relative position weights
|
595 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
596 |
+
|
597 |
+
# Apply Feed Forward layer
|
598 |
+
hidden_states = self.layer[-1](hidden_states)
|
599 |
+
|
600 |
+
# clamp inf values to enable fp16 training
|
601 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
602 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
603 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
604 |
+
|
605 |
+
outputs = (hidden_states,)
|
606 |
+
|
607 |
+
if use_cache:
|
608 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
609 |
+
else:
|
610 |
+
outputs = outputs + attention_outputs
|
611 |
+
|
612 |
+
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
613 |
+
|
614 |
+
|
615 |
+
class FairseqT5PreTrainedModel(PreTrainedModel):
|
616 |
+
"""
|
617 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
618 |
+
models.
|
619 |
+
"""
|
620 |
+
|
621 |
+
config_class = FairseqT5Config
|
622 |
+
load_tf_weights = None
|
623 |
+
base_model_prefix = "transformer"
|
624 |
+
is_parallelizable = True
|
625 |
+
supports_gradient_checkpointing = True
|
626 |
+
|
627 |
+
@property
|
628 |
+
def dummy_inputs(self):
|
629 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
630 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
631 |
+
dummy_inputs = {
|
632 |
+
"decoder_input_ids": input_ids,
|
633 |
+
"input_ids": input_ids,
|
634 |
+
"decoder_attention_mask": input_mask,
|
635 |
+
}
|
636 |
+
return dummy_inputs
|
637 |
+
|
638 |
+
def _init_weights(self, module):
|
639 |
+
"""Initialize the weights"""
|
640 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
641 |
+
if isinstance(module, T5LayerNorm) or isinstance(module, torch.nn.LayerNorm):
|
642 |
+
module.weight.data.fill_(factor * 1.0)
|
643 |
+
elif isinstance(module, (FairseqT5Model, FairseqT5ForConditionalGeneration, FairseqT5EncoderModel)):
|
644 |
+
# Mesh TensorFlow embeddings initialization
|
645 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
646 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
647 |
+
elif isinstance(module, T5DenseReluDense):
|
648 |
+
# Mesh TensorFlow FF initialization
|
649 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
650 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
651 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
652 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
653 |
+
module.wi.bias.data.zero_()
|
654 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
655 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
656 |
+
module.wo.bias.data.zero_()
|
657 |
+
elif isinstance(module, T5DenseGatedGeluDense):
|
658 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
659 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
660 |
+
module.wi_0.bias.data.zero_()
|
661 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
662 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
663 |
+
module.wi_1.bias.data.zero_()
|
664 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
665 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
666 |
+
module.wo.bias.data.zero_()
|
667 |
+
elif isinstance(module, T5Attention):
|
668 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
669 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
670 |
+
d_model = self.config.d_model
|
671 |
+
key_value_proj_dim = self.config.d_kv
|
672 |
+
n_heads = self.config.num_heads
|
673 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
674 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
675 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
676 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
677 |
+
if module.has_relative_attention_bias:
|
678 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
679 |
+
|
680 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
681 |
+
if isinstance(module, (T5Attention, FairseqT5Stack)):
|
682 |
+
module.gradient_checkpointing = value
|
683 |
+
|
684 |
+
def _shift_right(self, input_ids):
|
685 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
686 |
+
pad_token_id = self.config.pad_token_id
|
687 |
+
|
688 |
+
assert (
|
689 |
+
decoder_start_token_id is not None
|
690 |
+
), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information"
|
691 |
+
|
692 |
+
# shift inputs to the right
|
693 |
+
if is_torch_fx_proxy(input_ids):
|
694 |
+
# Item assignment is not supported natively for proxies.
|
695 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
696 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
697 |
+
else:
|
698 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
699 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
700 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
701 |
+
|
702 |
+
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
703 |
+
# replace possible -100 values in labels by `pad_token_id`
|
704 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
705 |
+
|
706 |
+
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
|
707 |
+
|
708 |
+
return shifted_input_ids
|
709 |
+
|
710 |
+
|
711 |
+
class FairseqT5Stack(FairseqT5PreTrainedModel):
|
712 |
+
def __init__(self, config, embed_tokens=None):
|
713 |
+
super().__init__(config)
|
714 |
+
|
715 |
+
self.embed_tokens = embed_tokens
|
716 |
+
self.pos_embed = PositionalEmbedding(
|
717 |
+
1024,
|
718 |
+
config.d_model,
|
719 |
+
config.pad_token_id,
|
720 |
+
)
|
721 |
+
self.is_decoder = config.is_decoder
|
722 |
+
|
723 |
+
# self.first_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) # final_layer_norm -> first layer norm
|
724 |
+
self.first_layer_norm = FST5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
725 |
+
self.dropout = nn.Dropout(config.dropout_rate) #
|
726 |
+
|
727 |
+
# modified
|
728 |
+
if not self.is_decoder:
|
729 |
+
self.block = nn.ModuleList(
|
730 |
+
# [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
731 |
+
[T5Block(config, has_relative_attention_bias=True) for i in range(config.num_layers)]
|
732 |
+
)
|
733 |
+
else:
|
734 |
+
self.block = nn.ModuleList(
|
735 |
+
# [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
736 |
+
[T5Block(config, has_relative_attention_bias=False) for i in range(config.num_layers)]
|
737 |
+
)
|
738 |
+
|
739 |
+
self.init_weights()
|
740 |
+
# Model parallel
|
741 |
+
self.model_parallel = False
|
742 |
+
self.device_map = None
|
743 |
+
self.gradient_checkpointing = False
|
744 |
+
|
745 |
+
self.padding_idx = self.config.pad_token_id
|
746 |
+
|
747 |
+
def parallelize(self, device_map=None):
|
748 |
+
# Check validity of device_map
|
749 |
+
self.device_map = (
|
750 |
+
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
|
751 |
+
)
|
752 |
+
assert_device_map(self.device_map, len(self.block))
|
753 |
+
self.model_parallel = True
|
754 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
755 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
756 |
+
# Load onto devices
|
757 |
+
for k, v in self.device_map.items():
|
758 |
+
for layer in v:
|
759 |
+
cuda_device = "cuda:" + str(k)
|
760 |
+
self.block[layer] = self.block[layer].to(cuda_device)
|
761 |
+
|
762 |
+
# Set embed_tokens to first layer
|
763 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
764 |
+
self.pos_embed = self.pos_embed.to(self.first_device)
|
765 |
+
# Set first layer norm to first device
|
766 |
+
self.first_layer_norm = self.first_layer_norm.to(self.first_device)
|
767 |
+
|
768 |
+
def deparallelize(self):
|
769 |
+
self.model_parallel = False
|
770 |
+
self.device_map = None
|
771 |
+
self.first_device = "cpu"
|
772 |
+
self.last_device = "cpu"
|
773 |
+
for i in range(len(self.block)):
|
774 |
+
self.block[i] = self.block[i].to("cpu")
|
775 |
+
self.embed_tokens = self.embed_tokens.to("cpu")
|
776 |
+
self.first_layer_norm = self.first_layer_norm.to("cpu")
|
777 |
+
torch.cuda.empty_cache()
|
778 |
+
|
779 |
+
def get_input_embeddings(self):
|
780 |
+
return self.embed_tokens
|
781 |
+
|
782 |
+
def set_input_embeddings(self, new_embeddings):
|
783 |
+
self.embed_tokens = new_embeddings
|
784 |
+
|
785 |
+
def forward(
|
786 |
+
self,
|
787 |
+
input_ids=None,
|
788 |
+
attention_mask=None,
|
789 |
+
encoder_hidden_states=None,
|
790 |
+
encoder_attention_mask=None,
|
791 |
+
inputs_embeds=None,
|
792 |
+
head_mask=None,
|
793 |
+
cross_attn_head_mask=None,
|
794 |
+
past_key_values=None,
|
795 |
+
use_cache=None,
|
796 |
+
output_attentions=None,
|
797 |
+
output_hidden_states=None,
|
798 |
+
return_dict=None,
|
799 |
+
pos_offset=0,
|
800 |
+
):
|
801 |
+
# Model parallel
|
802 |
+
if self.model_parallel:
|
803 |
+
torch.cuda.set_device(self.first_device)
|
804 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
805 |
+
self.pos_embed = self.pos_embed.to(self.first_device)
|
806 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
807 |
+
|
808 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
809 |
+
output_hidden_states = (
|
810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
811 |
+
)
|
812 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
813 |
+
|
814 |
+
if input_ids is not None and inputs_embeds is not None:
|
815 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
816 |
+
raise ValueError(
|
817 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
818 |
+
)
|
819 |
+
elif input_ids is not None:
|
820 |
+
input_shape = input_ids.size()
|
821 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
822 |
+
elif inputs_embeds is not None:
|
823 |
+
input_shape = inputs_embeds.size()[:-1]
|
824 |
+
else:
|
825 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
826 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
827 |
+
|
828 |
+
if inputs_embeds is None:
|
829 |
+
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
830 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
831 |
+
|
832 |
+
batch_size, seq_length = input_shape
|
833 |
+
|
834 |
+
# required mask seq length can be calculated via length of past
|
835 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
836 |
+
|
837 |
+
if use_cache is True:
|
838 |
+
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
839 |
+
|
840 |
+
if attention_mask is None:
|
841 |
+
attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device)
|
842 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
843 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
844 |
+
encoder_attention_mask = torch.ones(
|
845 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
846 |
+
)
|
847 |
+
|
848 |
+
# initialize past_key_values with `None` if past does not exist
|
849 |
+
if past_key_values is None:
|
850 |
+
past_key_values = [None] * len(self.block)
|
851 |
+
|
852 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
853 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
854 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, inputs_embeds.device)
|
855 |
+
|
856 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
857 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
858 |
+
if self.is_decoder and encoder_attention_mask is not None:
|
859 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
860 |
+
else:
|
861 |
+
encoder_extended_attention_mask = None
|
862 |
+
|
863 |
+
# Prepare head mask if needed
|
864 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
865 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
866 |
+
present_key_value_states = () if use_cache else None
|
867 |
+
all_hidden_states = () if output_hidden_states else None
|
868 |
+
all_attentions = () if output_attentions else None
|
869 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
870 |
+
position_bias = None
|
871 |
+
encoder_decoder_position_bias = None
|
872 |
+
|
873 |
+
# modified: position embedding
|
874 |
+
# if input_ids is not None:
|
875 |
+
# include position offset for decoding
|
876 |
+
pos_embeds = self.pos_embed(input_ids, offset=pos_offset)
|
877 |
+
inputs_embeds = inputs_embeds + pos_embeds
|
878 |
+
|
879 |
+
# hidden_states = self.dropout(inputs_embeds)
|
880 |
+
hidden_states = self.first_layer_norm(inputs_embeds) # modified: first layer_norm
|
881 |
+
hidden_states = self.dropout(hidden_states)
|
882 |
+
|
883 |
+
key_padding_mask: Optional[Tensor] = None
|
884 |
+
if self.is_decoder:
|
885 |
+
if input_ids.eq(self.padding_idx).any():
|
886 |
+
key_padding_mask = input_ids.eq(self.padding_idx)
|
887 |
+
|
888 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
889 |
+
layer_head_mask = head_mask[i]
|
890 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
891 |
+
# Model parallel
|
892 |
+
if self.model_parallel:
|
893 |
+
torch.cuda.set_device(hidden_states.device)
|
894 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
895 |
+
if attention_mask is not None:
|
896 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
897 |
+
if position_bias is not None:
|
898 |
+
position_bias = position_bias.to(hidden_states.device)
|
899 |
+
if encoder_hidden_states is not None:
|
900 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
901 |
+
if encoder_extended_attention_mask is not None:
|
902 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
903 |
+
if encoder_decoder_position_bias is not None:
|
904 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
905 |
+
if layer_head_mask is not None:
|
906 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
907 |
+
if cross_attn_layer_head_mask is not None:
|
908 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
909 |
+
if output_hidden_states:
|
910 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
911 |
+
|
912 |
+
if self.gradient_checkpointing and self.training:
|
913 |
+
if use_cache:
|
914 |
+
logger.warn(
|
915 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
916 |
+
)
|
917 |
+
use_cache = False
|
918 |
+
|
919 |
+
def create_custom_forward(module):
|
920 |
+
def custom_forward(*inputs):
|
921 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
922 |
+
|
923 |
+
return custom_forward
|
924 |
+
|
925 |
+
layer_outputs = checkpoint(
|
926 |
+
create_custom_forward(layer_module),
|
927 |
+
hidden_states,
|
928 |
+
extended_attention_mask,
|
929 |
+
position_bias,
|
930 |
+
encoder_hidden_states,
|
931 |
+
encoder_extended_attention_mask,
|
932 |
+
encoder_decoder_position_bias,
|
933 |
+
layer_head_mask,
|
934 |
+
cross_attn_layer_head_mask,
|
935 |
+
None, # past_key_value is always None with gradient checkpointing
|
936 |
+
key_padding_mask=key_padding_mask,
|
937 |
+
)
|
938 |
+
else:
|
939 |
+
layer_outputs = layer_module(
|
940 |
+
hidden_states,
|
941 |
+
attention_mask=extended_attention_mask,
|
942 |
+
position_bias=position_bias,
|
943 |
+
encoder_hidden_states=encoder_hidden_states,
|
944 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
945 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
946 |
+
layer_head_mask=layer_head_mask,
|
947 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
948 |
+
past_key_value=past_key_value,
|
949 |
+
use_cache=use_cache,
|
950 |
+
output_attentions=output_attentions,
|
951 |
+
key_padding_mask=key_padding_mask,
|
952 |
+
)
|
953 |
+
|
954 |
+
# layer_outputs is a tuple with:
|
955 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
956 |
+
if use_cache is False:
|
957 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
958 |
+
|
959 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
960 |
+
|
961 |
+
# We share the position biases between the layers - the first layer store them
|
962 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
963 |
+
# (cross-attention position bias), (cross-attention weights)
|
964 |
+
# position_bias = layer_outputs[2]
|
965 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
966 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
967 |
+
# append next layer key value states
|
968 |
+
if use_cache:
|
969 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
970 |
+
|
971 |
+
if output_attentions:
|
972 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
973 |
+
if self.is_decoder:
|
974 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
975 |
+
|
976 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
977 |
+
if self.model_parallel:
|
978 |
+
for k, v in self.device_map.items():
|
979 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
980 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
981 |
+
|
982 |
+
# modified: no final_layer_norm
|
983 |
+
# hidden_states = self.final_layer_norm(hidden_states)
|
984 |
+
# hidden_states = self.dropout(hidden_states)
|
985 |
+
|
986 |
+
# Add last layer
|
987 |
+
if output_hidden_states:
|
988 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
989 |
+
|
990 |
+
if not return_dict:
|
991 |
+
return tuple(
|
992 |
+
v
|
993 |
+
for v in [
|
994 |
+
hidden_states,
|
995 |
+
present_key_value_states,
|
996 |
+
all_hidden_states,
|
997 |
+
all_attentions,
|
998 |
+
all_cross_attentions,
|
999 |
+
]
|
1000 |
+
if v is not None
|
1001 |
+
)
|
1002 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1003 |
+
last_hidden_state=hidden_states,
|
1004 |
+
past_key_values=present_key_value_states,
|
1005 |
+
hidden_states=all_hidden_states,
|
1006 |
+
attentions=all_attentions,
|
1007 |
+
cross_attentions=all_cross_attentions,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
|
1011 |
+
class FairseqT5Model(FairseqT5PreTrainedModel):
|
1012 |
+
_keys_to_ignore_on_load_missing = [
|
1013 |
+
r"encoder\.embed_tokens\.weight",
|
1014 |
+
r"decoder\.embed_tokens\.weight",
|
1015 |
+
]
|
1016 |
+
_keys_to_ignore_on_load_unexpected = [
|
1017 |
+
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
1018 |
+
]
|
1019 |
+
|
1020 |
+
def __init__(self, config: FairseqT5Config):
|
1021 |
+
super().__init__(config)
|
1022 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1023 |
+
|
1024 |
+
encoder_config = copy.deepcopy(config)
|
1025 |
+
encoder_config.is_decoder = False
|
1026 |
+
encoder_config.use_cache = False
|
1027 |
+
encoder_config.is_encoder_decoder = False
|
1028 |
+
self.encoder = FairseqT5Stack(encoder_config, self.shared)
|
1029 |
+
|
1030 |
+
decoder_config = copy.deepcopy(config)
|
1031 |
+
decoder_config.is_decoder = True
|
1032 |
+
decoder_config.is_encoder_decoder = False
|
1033 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1034 |
+
self.decoder = FairseqT5Stack(decoder_config, self.shared)
|
1035 |
+
|
1036 |
+
# Initialize weights and apply final processing
|
1037 |
+
self.init_weights()
|
1038 |
+
|
1039 |
+
# Model parallel
|
1040 |
+
self.model_parallel = False
|
1041 |
+
self.device_map = None
|
1042 |
+
|
1043 |
+
def parallelize(self, device_map=None):
|
1044 |
+
self.device_map = (
|
1045 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1046 |
+
if device_map is None
|
1047 |
+
else device_map
|
1048 |
+
)
|
1049 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1050 |
+
self.encoder.parallelize(self.device_map)
|
1051 |
+
self.decoder.parallelize(self.device_map)
|
1052 |
+
self.model_parallel = True
|
1053 |
+
|
1054 |
+
def deparallelize(self):
|
1055 |
+
self.encoder.deparallelize()
|
1056 |
+
self.decoder.deparallelize()
|
1057 |
+
self.encoder = self.encoder.to("cpu")
|
1058 |
+
self.decoder = self.decoder.to("cpu")
|
1059 |
+
self.model_parallel = False
|
1060 |
+
self.device_map = None
|
1061 |
+
torch.cuda.empty_cache()
|
1062 |
+
|
1063 |
+
def get_input_embeddings(self):
|
1064 |
+
return self.shared
|
1065 |
+
|
1066 |
+
def set_input_embeddings(self, new_embeddings):
|
1067 |
+
self.shared = new_embeddings
|
1068 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1069 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1070 |
+
|
1071 |
+
def get_encoder(self):
|
1072 |
+
return self.encoder
|
1073 |
+
|
1074 |
+
def get_decoder(self):
|
1075 |
+
return self.decoder
|
1076 |
+
|
1077 |
+
def _prune_heads(self, heads_to_prune):
|
1078 |
+
"""
|
1079 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1080 |
+
class PreTrainedModel
|
1081 |
+
"""
|
1082 |
+
for layer, heads in heads_to_prune.items():
|
1083 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1084 |
+
|
1085 |
+
def forward(
|
1086 |
+
self,
|
1087 |
+
input_ids=None,
|
1088 |
+
attention_mask=None,
|
1089 |
+
decoder_input_ids=None,
|
1090 |
+
decoder_attention_mask=None,
|
1091 |
+
head_mask=None,
|
1092 |
+
decoder_head_mask=None,
|
1093 |
+
cross_attn_head_mask=None,
|
1094 |
+
encoder_outputs=None,
|
1095 |
+
past_key_values=None,
|
1096 |
+
inputs_embeds=None,
|
1097 |
+
decoder_inputs_embeds=None,
|
1098 |
+
use_cache=None,
|
1099 |
+
output_attentions=None,
|
1100 |
+
output_hidden_states=None,
|
1101 |
+
return_dict=None,
|
1102 |
+
):
|
1103 |
+
r"""
|
1104 |
+
Returns: Seq2SeqModelOutput
|
1105 |
+
|
1106 |
+
Example:
|
1107 |
+
|
1108 |
+
```python
|
1109 |
+
>>> from transformers import T5Tokenizer, T5Model
|
1110 |
+
|
1111 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1112 |
+
>>> model = FairseqT5Model.from_pretrained("t5-small")
|
1113 |
+
|
1114 |
+
>>> input_ids = tokenizer(
|
1115 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1116 |
+
>>> ).input_ids # Batch size 1
|
1117 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1118 |
+
|
1119 |
+
>>> # forward pass
|
1120 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1121 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1122 |
+
```"""
|
1123 |
+
use_cache = False
|
1124 |
+
|
1125 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1126 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1127 |
+
|
1128 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1129 |
+
if head_mask is not None and decoder_head_mask is None:
|
1130 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1131 |
+
decoder_head_mask = head_mask
|
1132 |
+
|
1133 |
+
# Encode if needed (training, first prediction pass)
|
1134 |
+
if encoder_outputs is None:
|
1135 |
+
encoder_outputs = self.encoder(
|
1136 |
+
input_ids=input_ids,
|
1137 |
+
attention_mask=attention_mask,
|
1138 |
+
inputs_embeds=inputs_embeds,
|
1139 |
+
head_mask=head_mask,
|
1140 |
+
output_attentions=output_attentions,
|
1141 |
+
output_hidden_states=output_hidden_states,
|
1142 |
+
return_dict=return_dict,
|
1143 |
+
)
|
1144 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1145 |
+
encoder_outputs = BaseModelOutput(
|
1146 |
+
last_hidden_state=encoder_outputs[0],
|
1147 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1148 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
hidden_states = encoder_outputs[0]
|
1152 |
+
if self.model_parallel:
|
1153 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1154 |
+
# Set device for model parallelism
|
1155 |
+
if self.model_parallel:
|
1156 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1157 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1158 |
+
if decoder_input_ids is not None:
|
1159 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1160 |
+
if attention_mask is not None:
|
1161 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1162 |
+
if decoder_attention_mask is not None:
|
1163 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1164 |
+
|
1165 |
+
# Decode
|
1166 |
+
decoder_outputs = self.decoder(
|
1167 |
+
input_ids=decoder_input_ids,
|
1168 |
+
attention_mask=decoder_attention_mask,
|
1169 |
+
inputs_embeds=decoder_inputs_embeds,
|
1170 |
+
past_key_values=past_key_values,
|
1171 |
+
encoder_hidden_states=hidden_states,
|
1172 |
+
encoder_attention_mask=attention_mask,
|
1173 |
+
head_mask=decoder_head_mask,
|
1174 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1175 |
+
use_cache=use_cache,
|
1176 |
+
output_attentions=output_attentions,
|
1177 |
+
output_hidden_states=output_hidden_states,
|
1178 |
+
return_dict=return_dict,
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
if not return_dict:
|
1182 |
+
return decoder_outputs + encoder_outputs
|
1183 |
+
|
1184 |
+
return Seq2SeqModelOutput(
|
1185 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1186 |
+
past_key_values=decoder_outputs.past_key_values,
|
1187 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1188 |
+
decoder_attentions=decoder_outputs.attentions,
|
1189 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1190 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1191 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1192 |
+
encoder_attentions=encoder_outputs.attentions,
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
|
1196 |
+
class FairseqT5ForConditionalGeneration(FairseqT5PreTrainedModel):
|
1197 |
+
_keys_to_ignore_on_load_missing = [
|
1198 |
+
r"encoder\.embed_tokens\.weight",
|
1199 |
+
r"decoder\.embed_tokens\.weight",
|
1200 |
+
r"lm_head\.weight",
|
1201 |
+
]
|
1202 |
+
_keys_to_ignore_on_load_unexpected = [
|
1203 |
+
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
1204 |
+
]
|
1205 |
+
|
1206 |
+
def __init__(self, config):
|
1207 |
+
super().__init__(config)
|
1208 |
+
self.model_dim = config.d_model
|
1209 |
+
|
1210 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1211 |
+
|
1212 |
+
encoder_config = copy.deepcopy(config)
|
1213 |
+
encoder_config.is_decoder = False
|
1214 |
+
encoder_config.use_cache = False
|
1215 |
+
encoder_config.is_encoder_decoder = False
|
1216 |
+
self.encoder = FairseqT5Stack(encoder_config, self.shared)
|
1217 |
+
|
1218 |
+
decoder_config = copy.deepcopy(config)
|
1219 |
+
decoder_config.is_decoder = True
|
1220 |
+
decoder_config.is_encoder_decoder = False
|
1221 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1222 |
+
self.decoder = FairseqT5Stack(decoder_config, self.shared)
|
1223 |
+
|
1224 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1225 |
+
|
1226 |
+
# Initialize weights and apply final processing
|
1227 |
+
self.init_weights()
|
1228 |
+
|
1229 |
+
# Model parallel
|
1230 |
+
self.model_parallel = False
|
1231 |
+
self.device_map = None
|
1232 |
+
|
1233 |
+
def parallelize(self, device_map=None):
|
1234 |
+
self.device_map = (
|
1235 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1236 |
+
if device_map is None
|
1237 |
+
else device_map
|
1238 |
+
)
|
1239 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1240 |
+
self.encoder.parallelize(self.device_map)
|
1241 |
+
self.decoder.parallelize(self.device_map)
|
1242 |
+
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
1243 |
+
self.model_parallel = True
|
1244 |
+
|
1245 |
+
def deparallelize(self):
|
1246 |
+
self.encoder.deparallelize()
|
1247 |
+
self.decoder.deparallelize()
|
1248 |
+
self.encoder = self.encoder.to("cpu")
|
1249 |
+
self.decoder = self.decoder.to("cpu")
|
1250 |
+
self.lm_head = self.lm_head.to("cpu")
|
1251 |
+
self.model_parallel = False
|
1252 |
+
self.device_map = None
|
1253 |
+
torch.cuda.empty_cache()
|
1254 |
+
|
1255 |
+
def get_input_embeddings(self):
|
1256 |
+
return self.shared
|
1257 |
+
|
1258 |
+
def set_input_embeddings(self, new_embeddings):
|
1259 |
+
self.shared = new_embeddings
|
1260 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1261 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1262 |
+
|
1263 |
+
def set_output_embeddings(self, new_embeddings):
|
1264 |
+
self.lm_head = new_embeddings
|
1265 |
+
|
1266 |
+
def get_output_embeddings(self):
|
1267 |
+
return self.lm_head
|
1268 |
+
|
1269 |
+
def get_encoder(self):
|
1270 |
+
return self.encoder
|
1271 |
+
|
1272 |
+
def get_decoder(self):
|
1273 |
+
return self.decoder
|
1274 |
+
|
1275 |
+
def forward(
|
1276 |
+
self,
|
1277 |
+
input_ids=None,
|
1278 |
+
attention_mask=None,
|
1279 |
+
decoder_input_ids=None,
|
1280 |
+
decoder_attention_mask=None,
|
1281 |
+
head_mask=None,
|
1282 |
+
decoder_head_mask=None,
|
1283 |
+
cross_attn_head_mask=None,
|
1284 |
+
encoder_outputs=None,
|
1285 |
+
past_key_values=None,
|
1286 |
+
inputs_embeds=None,
|
1287 |
+
decoder_inputs_embeds=None,
|
1288 |
+
labels=None,
|
1289 |
+
use_cache=None,
|
1290 |
+
output_attentions=None,
|
1291 |
+
output_hidden_states=None,
|
1292 |
+
return_dict=None,
|
1293 |
+
pos_offset=0,
|
1294 |
+
):
|
1295 |
+
r"""
|
1296 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1297 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1298 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1299 |
+
labels in `[0, ..., config.vocab_size]`
|
1300 |
+
|
1301 |
+
Returns: Seq2SeqLMOutput
|
1302 |
+
|
1303 |
+
Examples:
|
1304 |
+
|
1305 |
+
```python
|
1306 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
1307 |
+
|
1308 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1309 |
+
>>> model = FairseqT5ForConditionalGeneration.from_pretrained("t5-small")
|
1310 |
+
|
1311 |
+
>>> # training
|
1312 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
1313 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
1314 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1315 |
+
>>> loss = outputs.loss
|
1316 |
+
>>> logits = outputs.logits
|
1317 |
+
|
1318 |
+
>>> # inference
|
1319 |
+
>>> input_ids = tokenizer(
|
1320 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
1321 |
+
>>> ).input_ids # Batch size 1
|
1322 |
+
>>> outputs = model.generate(input_ids)
|
1323 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
1324 |
+
>>> # studies have shown that owning a dog is good for you.
|
1325 |
+
```"""
|
1326 |
+
|
1327 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1328 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1329 |
+
|
1330 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1331 |
+
if head_mask is not None and decoder_head_mask is None:
|
1332 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1333 |
+
decoder_head_mask = head_mask
|
1334 |
+
|
1335 |
+
# Encode if needed (training, first prediction pass)
|
1336 |
+
if encoder_outputs is None:
|
1337 |
+
# Convert encoder inputs in embeddings if needed
|
1338 |
+
encoder_outputs = self.encoder(
|
1339 |
+
input_ids=input_ids,
|
1340 |
+
attention_mask=attention_mask,
|
1341 |
+
inputs_embeds=inputs_embeds,
|
1342 |
+
head_mask=head_mask,
|
1343 |
+
output_attentions=output_attentions,
|
1344 |
+
output_hidden_states=output_hidden_states,
|
1345 |
+
return_dict=return_dict,
|
1346 |
+
)
|
1347 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1348 |
+
encoder_outputs = BaseModelOutput(
|
1349 |
+
last_hidden_state=encoder_outputs[0],
|
1350 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1351 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
hidden_states = encoder_outputs[0]
|
1355 |
+
|
1356 |
+
if self.model_parallel:
|
1357 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1358 |
+
|
1359 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
1360 |
+
# get decoder inputs from shifting lm labels to the right
|
1361 |
+
decoder_input_ids = self._shift_right(labels)
|
1362 |
+
|
1363 |
+
# If decoding with past key value states, only the last tokens
|
1364 |
+
# should be given as an input
|
1365 |
+
if past_key_values is not None:
|
1366 |
+
assert labels is None, "Decoder should not use cached key value states when training."
|
1367 |
+
if decoder_input_ids is not None:
|
1368 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1369 |
+
if decoder_inputs_embeds is not None:
|
1370 |
+
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
|
1371 |
+
|
1372 |
+
# Set device for model parallelism
|
1373 |
+
if self.model_parallel:
|
1374 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1375 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1376 |
+
if decoder_input_ids is not None:
|
1377 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1378 |
+
if attention_mask is not None:
|
1379 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1380 |
+
if decoder_attention_mask is not None:
|
1381 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1382 |
+
|
1383 |
+
# Decode
|
1384 |
+
decoder_outputs = self.decoder(
|
1385 |
+
input_ids=decoder_input_ids,
|
1386 |
+
attention_mask=decoder_attention_mask,
|
1387 |
+
inputs_embeds=decoder_inputs_embeds,
|
1388 |
+
past_key_values=past_key_values,
|
1389 |
+
encoder_hidden_states=hidden_states,
|
1390 |
+
encoder_attention_mask=attention_mask,
|
1391 |
+
head_mask=decoder_head_mask,
|
1392 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1393 |
+
use_cache=use_cache,
|
1394 |
+
output_attentions=output_attentions,
|
1395 |
+
output_hidden_states=output_hidden_states,
|
1396 |
+
return_dict=return_dict,
|
1397 |
+
pos_offset=pos_offset,
|
1398 |
+
)
|
1399 |
+
|
1400 |
+
sequence_output = decoder_outputs[0]
|
1401 |
+
|
1402 |
+
# Set device for model parallelism
|
1403 |
+
if self.model_parallel:
|
1404 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1405 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1406 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
1407 |
+
|
1408 |
+
lm_logits = self.lm_head(sequence_output)
|
1409 |
+
|
1410 |
+
loss = None
|
1411 |
+
if labels is not None:
|
1412 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
1413 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1414 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
1415 |
+
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
1418 |
+
return ((loss,) + output) if loss is not None else output
|
1419 |
+
|
1420 |
+
return Seq2SeqLMOutput(
|
1421 |
+
loss=loss,
|
1422 |
+
logits=lm_logits,
|
1423 |
+
past_key_values=decoder_outputs.past_key_values,
|
1424 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1425 |
+
decoder_attentions=decoder_outputs.attentions,
|
1426 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1427 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1428 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1429 |
+
encoder_attentions=encoder_outputs.attentions,
|
1430 |
+
)
|
1431 |
+
|
1432 |
+
def prepare_inputs_for_generation(
|
1433 |
+
self,
|
1434 |
+
input_ids,
|
1435 |
+
past=None,
|
1436 |
+
attention_mask=None,
|
1437 |
+
head_mask=None,
|
1438 |
+
decoder_head_mask=None,
|
1439 |
+
cross_attn_head_mask=None,
|
1440 |
+
use_cache=None,
|
1441 |
+
encoder_outputs=None,
|
1442 |
+
**kwargs
|
1443 |
+
):
|
1444 |
+
# cut decoder_input_ids if past is used
|
1445 |
+
offset = 0
|
1446 |
+
if past is not None:
|
1447 |
+
offset = max(0, int(input_ids.size(1)) - 1)
|
1448 |
+
input_ids = input_ids[:, -1:]
|
1449 |
+
|
1450 |
+
return {
|
1451 |
+
"decoder_input_ids": input_ids,
|
1452 |
+
"past_key_values": past,
|
1453 |
+
"encoder_outputs": encoder_outputs,
|
1454 |
+
"attention_mask": attention_mask,
|
1455 |
+
"head_mask": head_mask,
|
1456 |
+
"decoder_head_mask": decoder_head_mask,
|
1457 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1458 |
+
"use_cache": use_cache,
|
1459 |
+
"pos_offset": offset,
|
1460 |
+
}
|
1461 |
+
|
1462 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1463 |
+
return self._shift_right(labels)
|
1464 |
+
|
1465 |
+
def _reorder_cache(self, past, beam_idx):
|
1466 |
+
# if decoder past is not included in output
|
1467 |
+
# speedy decoding is disabled and no need to reorder
|
1468 |
+
if past is None:
|
1469 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
1470 |
+
return past
|
1471 |
+
|
1472 |
+
reordered_decoder_past = ()
|
1473 |
+
for layer_past_states in past:
|
1474 |
+
# get the correct batch idx from layer past batch dim
|
1475 |
+
# batch dim of `past` is at 2nd position
|
1476 |
+
reordered_layer_past_states = ()
|
1477 |
+
for layer_past_state in layer_past_states:
|
1478 |
+
# need to set correct `past` for each of the four key / value states
|
1479 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1480 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
1481 |
+
)
|
1482 |
+
|
1483 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
1484 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
1485 |
+
|
1486 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
1487 |
+
return reordered_decoder_past
|
1488 |
+
|
1489 |
+
|
1490 |
+
class FairseqT5EncoderModel(FairseqT5PreTrainedModel):
|
1491 |
+
authorized_missing_keys = [
|
1492 |
+
r"encoder\.embed_tokens\.weight",
|
1493 |
+
]
|
1494 |
+
|
1495 |
+
def __init__(self, config: FairseqT5Config):
|
1496 |
+
super().__init__(config)
|
1497 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1498 |
+
|
1499 |
+
encoder_config = copy.deepcopy(config)
|
1500 |
+
encoder_config.is_decoder = False
|
1501 |
+
encoder_config.use_cache = False
|
1502 |
+
encoder_config.is_encoder_decoder = False
|
1503 |
+
self.encoder = FairseqT5Stack(encoder_config, self.shared)
|
1504 |
+
|
1505 |
+
# Initialize weights and apply final processing
|
1506 |
+
self.init_weights()
|
1507 |
+
|
1508 |
+
# Model parallel
|
1509 |
+
self.model_parallel = False
|
1510 |
+
self.device_map = None
|
1511 |
+
|
1512 |
+
def parallelize(self, device_map=None):
|
1513 |
+
self.device_map = (
|
1514 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1515 |
+
if device_map is None
|
1516 |
+
else device_map
|
1517 |
+
)
|
1518 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1519 |
+
self.encoder.parallelize(self.device_map)
|
1520 |
+
self.model_parallel = True
|
1521 |
+
|
1522 |
+
def deparallelize(self):
|
1523 |
+
self.encoder.deparallelize()
|
1524 |
+
self.encoder = self.encoder.to("cpu")
|
1525 |
+
self.model_parallel = False
|
1526 |
+
self.device_map = None
|
1527 |
+
torch.cuda.empty_cache()
|
1528 |
+
|
1529 |
+
def get_input_embeddings(self):
|
1530 |
+
return self.shared
|
1531 |
+
|
1532 |
+
def set_input_embeddings(self, new_embeddings):
|
1533 |
+
self.shared = new_embeddings
|
1534 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1535 |
+
|
1536 |
+
def get_encoder(self):
|
1537 |
+
return self.encoder
|
1538 |
+
|
1539 |
+
def _prune_heads(self, heads_to_prune):
|
1540 |
+
"""
|
1541 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1542 |
+
class PreTrainedModel
|
1543 |
+
"""
|
1544 |
+
for layer, heads in heads_to_prune.items():
|
1545 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1546 |
+
|
1547 |
+
def forward(
|
1548 |
+
self,
|
1549 |
+
input_ids=None,
|
1550 |
+
attention_mask=None,
|
1551 |
+
head_mask=None,
|
1552 |
+
inputs_embeds=None,
|
1553 |
+
output_attentions=None,
|
1554 |
+
output_hidden_states=None,
|
1555 |
+
return_dict=None,
|
1556 |
+
):
|
1557 |
+
r"""
|
1558 |
+
Returns: BaseModelOutput
|
1559 |
+
|
1560 |
+
Example:
|
1561 |
+
|
1562 |
+
```python
|
1563 |
+
>>> from transformers import T5Tokenizer, T5EncoderModel
|
1564 |
+
|
1565 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1566 |
+
>>> model = FairseqT5EncoderModel.from_pretrained("t5-small")
|
1567 |
+
>>> input_ids = tokenizer(
|
1568 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1569 |
+
>>> ).input_ids # Batch size 1
|
1570 |
+
>>> outputs = model(input_ids=input_ids)
|
1571 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1572 |
+
```"""
|
1573 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1574 |
+
|
1575 |
+
encoder_outputs = self.encoder(
|
1576 |
+
input_ids=input_ids,
|
1577 |
+
attention_mask=attention_mask,
|
1578 |
+
inputs_embeds=inputs_embeds,
|
1579 |
+
head_mask=head_mask,
|
1580 |
+
output_attentions=output_attentions,
|
1581 |
+
output_hidden_states=output_hidden_states,
|
1582 |
+
return_dict=return_dict,
|
1583 |
+
)
|
1584 |
+
|
1585 |
+
return encoder_outputs
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cab98b57402ecd6f85697c329fb3f9a451da53fb89a90d04fc71cd0040a354b3
|
3 |
+
size 998586155
|