File size: 2,519 Bytes
b1271ab 0277b55 b1271ab 0277b55 b1271ab 0277b55 b1271ab 0277b55 b1271ab 95aff8c b3b174a b1271ab 3b408dc b1271ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
base_model: microsoft/swin-tiny-patch4-window7-224
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-skin-cancer
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: imagefolder
type: imagefolder
args: default
metrics:
- type: accuracy
value: 0.7275449101796407
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-skin-cancer
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7695
- Accuracy: 0.7275
## Model description
This model was created by importing the dataset of the photos of skin cancer into Google Colab from kaggle here: https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000 . I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb
obtaining the following notebook:
https://colab.research.google.com/drive/1bMkXnAvAqjX3J2YJ8wXTNw2Z2pt5KCjy?usp=sharing
The possible classified diseases are: 'Actinic-keratoses', 'Basal-cell-carcinoma', 'Benign-keratosis-like-lesions', 'Dermatofibroma', 'Melanocytic-nevi', 'Melanoma', 'Vascular-lesions' .
## Skin example:
![skin](skin.png)
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6911 | 0.99 | 70 | 0.7695 | 0.7275 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|