Initial commit
Browse files- README.md +111 -0
- config.json +23 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: sk
|
3 |
+
tags:
|
4 |
+
- SlovakBERT
|
5 |
+
license: mit
|
6 |
+
datasets:
|
7 |
+
- wikipedia
|
8 |
+
- opensubtitles
|
9 |
+
- oscar
|
10 |
+
- gerulatawebcrawl
|
11 |
+
- gerulatamonitoring
|
12 |
+
- blbec.online
|
13 |
+
---
|
14 |
+
|
15 |
+
# SlovakBERT (base-sized model)
|
16 |
+
SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovenko and Slovensko.
|
17 |
+
|
18 |
+
## Intended uses & limitations
|
19 |
+
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
|
20 |
+
**IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks).
|
21 |
+
|
22 |
+
### How to use
|
23 |
+
You can use this model directly with a pipeline for masked language modeling:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import pipeline
|
27 |
+
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
28 |
+
unmasker("Deti sa <mask> na ihrisku.")
|
29 |
+
|
30 |
+
[{'sequence': 'Deti sa hrali na ihrisku.',
|
31 |
+
'score': 0.6355380415916443,
|
32 |
+
'token': 5949,
|
33 |
+
'token_str': ' hrali'},
|
34 |
+
{'sequence': 'Deti sa hrajú na ihrisku.',
|
35 |
+
'score': 0.14731724560260773,
|
36 |
+
'token': 9081,
|
37 |
+
'token_str': ' hrajú'},
|
38 |
+
{'sequence': 'Deti sa zahrali na ihrisku.',
|
39 |
+
'score': 0.05016357824206352,
|
40 |
+
'token': 32553,
|
41 |
+
'token_str': ' zahrali'},
|
42 |
+
{'sequence': 'Deti sa stretli na ihrisku.',
|
43 |
+
'score': 0.041727423667907715,
|
44 |
+
'token': 5964,
|
45 |
+
'token_str': ' stretli'},
|
46 |
+
{'sequence': 'Deti sa učia na ihrisku.',
|
47 |
+
'score': 0.01886524073779583,
|
48 |
+
'token': 18099,
|
49 |
+
'token_str': ' učia'}]
|
50 |
+
```
|
51 |
+
|
52 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
53 |
+
```python
|
54 |
+
from transformers import RobertaTokenizer, RobertaModel
|
55 |
+
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert')
|
56 |
+
model = RobertaModel.from_pretrained('gerulata/slovakbert')
|
57 |
+
text = "Text ktorý sa má embedovať."
|
58 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
59 |
+
output = model(**encoded_input)
|
60 |
+
```
|
61 |
+
and in TensorFlow:
|
62 |
+
```python
|
63 |
+
from transformers import RobertaTokenizer, TFRobertaModel
|
64 |
+
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
65 |
+
model = TFRobertaModel.from_pretrained('roberta-base')
|
66 |
+
text = "Text ktorý sa má embedovať."
|
67 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
68 |
+
output = model(encoded_input)
|
69 |
+
```
|
70 |
+
Or extract information from the model like this:
|
71 |
+
```python
|
72 |
+
from transformers import pipeline
|
73 |
+
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
74 |
+
unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.")
|
75 |
+
|
76 |
+
[{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.',
|
77 |
+
'score': 0.7383289933204651,
|
78 |
+
'token': 16621,
|
79 |
+
'token_str': ' 1944'},...]
|
80 |
+
```
|
81 |
+
|
82 |
+
# Training data
|
83 |
+
The SlovakBERT model was pretrained on the these datasets:
|
84 |
+
|
85 |
+
- Wikipedia (326MB of text),
|
86 |
+
- OpenSubtitles (415MB of text),
|
87 |
+
- Oscar (4.6GB of text),
|
88 |
+
- Gerulata WebCrawl (12.7GB of text) ,
|
89 |
+
- Gerulata Monitoring (214 MB of text),
|
90 |
+
- blbec.online (4.5GB of text)
|
91 |
+
|
92 |
+
The text was then processed with the following steps:
|
93 |
+
- URL and email addresses were replaced with special tokens ("url", "email").
|
94 |
+
- Elongated interpunction was reduced (e.g. -- to -).
|
95 |
+
- Markdown syntax was deleted.
|
96 |
+
- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text.
|
97 |
+
|
98 |
+
We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text.
|
99 |
+
|
100 |
+
# Pretraining
|
101 |
+
The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision.
|
102 |
+
|
103 |
+
## About us
|
104 |
+
<a href="https://www.gerulata.com/">
|
105 |
+
<img width="300px" src="https://www.gerulata.com/images/gerulata-logo-blue.png">
|
106 |
+
</a>
|
107 |
+
|
108 |
+
Gerulata uses near real-time monitoring, advanced analytics and machine learning to help create a safer, more productive and enjoyable online environment for everyone.
|
109 |
+
|
110 |
+
### BibTeX entry and citation info
|
111 |
+
- to be completed
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gerulata/slovakbert",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"type_vocab_size": 1,
|
22 |
+
"vocab_size": 50264
|
23 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71bf910b56cca82b2b9bf79b4ed7212cfba711fb3b90cfb79181e97f495ab130
|
3 |
+
size 499040675
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c5a18b0c0c0e42251e20f3d5ccfd7ccd87752ee560d326ff0faa31eb4546474
|
3 |
+
size 657427592
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"errors": "replace", "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "special_tokens_map_file": null, "tokenizer_file": null, "model_max_length": 512, "name_or_path": "sk-roberta-base-300k-voc50264-20gb"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|