File size: 1,996 Bytes
622046f
 
 
 
 
 
 
 
 
 
 
 
 
 
d414391
622046f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: med_masked_pubmed_articles_biogpt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# med_masked_pubmed_articles_biogpt

This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on a med_masked_pubmed_articles dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1952
- Rouge2 Precision: 0.7072
- Rouge2 Recall: 0.7001
- Rouge2 Fmeasure: 0.7025

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 3.1392        | 1.0   | 7914  | 3.0945          | 0.7075           | 0.7001        | 0.7026          |
| 2.927         | 2.0   | 15828 | 3.0705          | 0.7074           | 0.7001        | 0.7026          |
| 2.8558        | 3.0   | 23742 | 3.0877          | 0.7073           | 0.7001        | 0.7025          |
| 2.7035        | 4.0   | 31656 | 3.1354          | 0.7073           | 0.7001        | 0.7026          |
| 2.6209        | 5.0   | 39570 | 3.1952          | 0.7072           | 0.7001        | 0.7025          |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2