File size: 4,875 Bytes
fa2c1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: ec-biogpt-noised-pubmed-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ec-biogpt-noised-pubmed-v3
This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7552
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.9981 | 0.07 | 500 | 1.8163 |
| 1.7501 | 0.14 | 1000 | 1.7809 |
| 2.0623 | 0.22 | 1500 | 1.7638 |
| 1.8094 | 0.29 | 2000 | 1.7458 |
| 1.8711 | 0.36 | 2500 | 1.7326 |
| 1.6588 | 0.43 | 3000 | 1.7244 |
| 1.5469 | 0.5 | 3500 | 1.7153 |
| 1.6981 | 0.57 | 4000 | 1.7084 |
| 1.6728 | 0.65 | 4500 | 1.7025 |
| 1.8203 | 0.72 | 5000 | 1.6973 |
| 1.8318 | 0.79 | 5500 | 1.6924 |
| 1.6916 | 0.86 | 6000 | 1.6906 |
| 1.6369 | 0.93 | 6500 | 1.6816 |
| 1.4371 | 1.01 | 7000 | 1.6838 |
| 1.381 | 1.08 | 7500 | 1.6829 |
| 1.6214 | 1.15 | 8000 | 1.6846 |
| 1.6218 | 1.22 | 8500 | 1.6790 |
| 1.6278 | 1.29 | 9000 | 1.6788 |
| 1.4046 | 1.36 | 9500 | 1.6774 |
| 1.4866 | 1.44 | 10000 | 1.6728 |
| 1.4712 | 1.51 | 10500 | 1.6716 |
| 1.5896 | 1.58 | 11000 | 1.6702 |
| 1.4818 | 1.65 | 11500 | 1.6681 |
| 1.4261 | 1.72 | 12000 | 1.6638 |
| 1.5318 | 1.79 | 12500 | 1.6624 |
| 1.4814 | 1.87 | 13000 | 1.6620 |
| 1.5131 | 1.94 | 13500 | 1.6583 |
| 1.3971 | 2.01 | 14000 | 1.6806 |
| 1.4146 | 2.08 | 14500 | 1.6842 |
| 1.5739 | 2.15 | 15000 | 1.6888 |
| 1.312 | 2.23 | 15500 | 1.6857 |
| 1.4992 | 2.3 | 16000 | 1.6876 |
| 1.2725 | 2.37 | 16500 | 1.6845 |
| 1.3904 | 2.44 | 17000 | 1.6840 |
| 1.4569 | 2.51 | 17500 | 1.6855 |
| 1.4358 | 2.58 | 18000 | 1.6811 |
| 1.4747 | 2.66 | 18500 | 1.6814 |
| 1.3272 | 2.73 | 19000 | 1.6818 |
| 1.3743 | 2.8 | 19500 | 1.6756 |
| 1.3953 | 2.87 | 20000 | 1.6759 |
| 1.4173 | 2.94 | 20500 | 1.6748 |
| 1.3998 | 3.02 | 21000 | 1.7133 |
| 1.3396 | 3.09 | 21500 | 1.7205 |
| 1.1953 | 3.16 | 22000 | 1.7218 |
| 1.2047 | 3.23 | 22500 | 1.7223 |
| 1.0788 | 3.3 | 23000 | 1.7214 |
| 1.3048 | 3.37 | 23500 | 1.7230 |
| 1.3271 | 3.45 | 24000 | 1.7195 |
| 1.4236 | 3.52 | 24500 | 1.7208 |
| 1.1851 | 3.59 | 25000 | 1.7209 |
| 1.285 | 3.66 | 25500 | 1.7207 |
| 1.3013 | 3.73 | 26000 | 1.7174 |
| 1.2734 | 3.81 | 26500 | 1.7182 |
| 1.3496 | 3.88 | 27000 | 1.7168 |
| 1.3628 | 3.95 | 27500 | 1.7134 |
| 1.0063 | 4.02 | 28000 | 1.7507 |
| 1.1155 | 4.09 | 28500 | 1.7557 |
| 1.1886 | 4.16 | 29000 | 1.7571 |
| 1.1304 | 4.24 | 29500 | 1.7575 |
| 1.0328 | 4.31 | 30000 | 1.7563 |
| 1.2631 | 4.38 | 30500 | 1.7584 |
| 1.2212 | 4.45 | 31000 | 1.7564 |
| 1.1825 | 4.52 | 31500 | 1.7583 |
| 1.4374 | 4.6 | 32000 | 1.7562 |
| 1.1568 | 4.67 | 32500 | 1.7554 |
| 1.3035 | 4.74 | 33000 | 1.7565 |
| 1.27 | 4.81 | 33500 | 1.7557 |
| 1.2518 | 4.88 | 34000 | 1.7560 |
| 1.0965 | 4.95 | 34500 | 1.7552 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
|