Generated from Trainer
Eval Results
fsicoli commited on
Commit
1ab8e3d
1 Parent(s): a36d312

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-large-v3
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: whisper-large-v3-pt-1000h-ct2
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
18
+ default
19
+ type: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
20
+ args: default
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.11132023872721715
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # whisper-large-v3-pt-1000h-ct2
31
+
32
+ This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset. It was converted to the CTranslate2 format.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.5576
35
+ - Wer: 0.1113
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-06
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - distributed_type: multi-GPU
59
+ - num_devices: 2
60
+ - total_train_batch_size: 32
61
+ - total_eval_batch_size: 16
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 10000
65
+ - training_steps: 82000
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
71
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
72
+ | 0.2717 | 0.39 | 10000 | 0.4143 | 0.1341 |
73
+ | 0.2646 | 0.79 | 20000 | 0.4141 | 0.1284 |
74
+ | 0.2244 | 1.18 | 30000 | 0.5361 | 0.1253 |
75
+ | 0.2056 | 1.57 | 40000 | 0.4714 | 0.1223 |
76
+ | 0.2034 | 1.97 | 50000 | 0.4937 | 0.1195 |
77
+ | 0.1717 | 2.36 | 60000 | 0.5127 | 0.1178 |
78
+ | 0.1692 | 2.75 | 70000 | 0.6040 | 0.1146 |
79
+ | 0.121 | 3.15 | 80000 | 0.5361 | 0.1130 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.39.0.dev0
85
+ - Pytorch 2.2.1
86
+ - Datasets 2.18.1.dev0
87
+ - Tokenizers 0.15.2