{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a689790b5b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a689790b640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a689790b6d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a689790b760>", "_build": "<function ActorCriticPolicy._build at 0x7a689790b7f0>", "forward": "<function ActorCriticPolicy.forward at 0x7a689790b880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a689790b910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a689790b9a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a689790ba30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a689790bac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a689790bb50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a689790bbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a68978fe880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710977174625321017, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJok7DwvP6o/Y1LqPi51Kr9L24S7EJalPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEhpKA8SwnqMAWyUS+mMAXSUR0Cb8PDKYAsDdX2UKGgGR0BsErbSJCSiaAdNYgFoCEdAm/O/KU3XI3V9lChoBkdAa96ixmkFfWgHTSIBaAhHQJv11YT0xud1fZQoaAZHQGx52f029+RoB00wAWgIR0Cb+c8CxNZedX2UKGgGR0BwWtpAUtZnaAdNSgFoCEdAm/uiFK02L3V9lChoBkdAcZEoFFDv3WgHTRIBaAhHQJv9M60Y0l91fZQoaAZHQG5gT9bX6IpoB00+AWgIR0Cb/v3GXHBDdX2UKGgGR0Bv5CvNeMQ3aAdNHQFoCEdAnAH6vzOHFnV9lChoBkdAbZrfl6qsEWgHTSkBaAhHQJwDpweeWfN1fZQoaAZHQHAFGknCwbFoB01iAWgIR0CcBaxqwhW6dX2UKGgGR0BxAm11GLDRaAdNYgFoCEdAnAja+zt1IXV9lChoBkdAcDBq3mV7hWgHTYABaAhHQJwLDeVLSNR1fZQoaAZHQHHtVkYoAn5oB01jAWgIR0CcDRjbSJCTdX2UKGgGR0BsdMPMB6rvaAdNHwFoCEdAnA/dvwVj7XV9lChoBkdAbky5QxesxWgHTSQBaAhHQJwRh/vv0Ad1fZQoaAZHQHCTXMt9QXRoB01nAWgIR0CcE3ru6VdHdX2UKGgGR0A7sqIrOJLvaAdL22gIR0CcFd+N96TodX2UKGgGR0Bw5QLfDUExaAdNXwFoCEdAnBfQL7XQMXV9lChoBkdAKbYzBRAKOWgHS9BoCEdAnBj4HcDbJ3V9lChoBkdAcGixEv0yxmgHTUABaAhHQJway4gA6uJ1fZQoaAZHQHC9ws9SuQpoB01ZAWgIR0CcHe078vVWdX2UKGgGR0BwkfOu7pV0aAdNSQFoCEdAnB/GKQ7tA3V9lChoBkdAbYKWdmQKbGgHTT4BaAhHQJwhxiy6cy51fZQoaAZHQHBEdA9mpVFoB00XAWgIR0CcJVC1Z1V6dX2UKGgGR0BwXjxOLzf8aAdNbQFoCEdAnCgIzabnYHV9lChoBkdAcEDm2b5M12gHTUUBaAhHQJwqY9nscAB1fZQoaAZHQG6irpqynk1oB00pAWgIR0CcLTfigkC4dX2UKGgGR0BHxeX7cfvGaAdLu2gIR0CcLkP1L8JldX2UKGgGR0BtdlCLMs6JaAdNFQFoCEdAnC/SgGr0a3V9lChoBkdAbuSQ176YV2gHTTUBaAhHQJwxjpNbkfd1fZQoaAZHQHAxbHIZIhBoB000AWgIR0CcNHexOclPdX2UKGgGR0A2bWweNkvsaAdLz2gIR0CcNaT8HfMwdX2UKGgGR0Bwgrdj5KvnaAdNYQFoCEdAnDewLNOdoXV9lChoBkdAcAaWyTpxFWgHTU8BaAhHQJw63eoDPnl1fZQoaAZHQDmL0aqCHypoB0vMaAhHQJw8BcpsoDx1fZQoaAZHQHDjIvBacI9oB000AWgIR0CcPcD9fkWAdX2UKGgGR0A5uL74zrNXaAdL9WgIR0CcPyOby6MBdX2UKGgGR0BuDsZvUBn0aAdNPwFoCEdAnEIZtWMjvHV9lChoBkdAcfaZNwiqyWgHTX0BaAhHQJxEQjUutfZ1fZQoaAZHQHFRMR15jYtoB01BAWgIR0CcRhETg2qDdX2UKGgGR0Bw7LctXgccaAdNKAFoCEdAnEjt+1Bt13V9lChoBkdAOhCtNi6QNmgHS8xoCEdAnEoVQQ+UyHV9lChoBkdAbPTsbedkKGgHTWcBaAhHQJxMHHaN+9d1fZQoaAZHQHDE9dJJ5FBoB01VAWgIR0CcThAe7tiQdX2UKGgGR0Bxdj9VFQVLaAdNWQFoCEdAnFFEYwZflnV9lChoBkdAcXCMLncL0GgHTQQBaAhHQJxTOCqZML51fZQoaAZHQHDBa0dBBzFoB005AWgIR0CcVXdfsu3+dX2UKGgGR0BwoYCuEEkjaAdNQgFoCEdAnFmofSx7iXV9lChoBkdAcOciyprDZWgHTVgBaAhHQJxbpnrY5DJ1fZQoaAZHQHBcyBwuM/BoB00ZAWgIR0CcXURIBikPdX2UKGgGR0BwM08hcJMQaAdNVgFoCEdAnGBt/e+EiHV9lChoBkdAQWXmFJxvN2gHS+ZoCEdAnGG6RlpXZHV9lChoBkdAcI2F+NLlFWgHTRsBaAhHQJxjVU6xPft1fZQoaAZHQGFSpnxri2loB03oA2gIR0Ccaj58jRlZdX2UKGgGR0BukN1p0wJxaAdNFwFoCEdAnGvuhTOxB3V9lChoBkdAYSUXenAIp2gHTegDaAhHQJxy5KNAC4l1fZQoaAZHwDPWgIyCWeJoB00JAWgIR0CcdZs5GSZCdX2UKGgGR0BwyQ7V8Ti9aAdNFQFoCEdAnHcmJN0vG3V9lChoBkdAb8ne1rqMWGgHTTMBaAhHQJx46/gzguR1fZQoaAZHQHA3PCVKPGRoB00kAWgIR0Ccepd/8VHndX2UKGgGR0BwQl2LYPGyaAdNawFoCEdAnH3aiKziTHV9lChoBkdAbIwcHWz4UWgHTWsBaAhHQJx/4mZ3LV51fZQoaAZHQG3HNfPX05FoB00iAWgIR0CcgZIUJv5ydX2UKGgGR0Bsc/r4WUKRaAdNVAFoCEdAnIWsMy8BdXV9lChoBkdAbnEIYWLxZ2gHTR4BaAhHQJyHz4Kx9oh1fZQoaAZHQHCVtV3ljmVoB01GAWgIR0Ccikd4FA3UdX2UKGgGR0Bwg5zmwJPZaAdNmgFoCEdAnI3VG5MDfXV9lChoBkdAb1NxYq5LAmgHTTEBaAhHQJyPkAIY3vR1fZQoaAZHQHA0wood+5RoB000AWgIR0CckWBsANobdX2UKGgGR0BwqtoL5RCQaAdNagFoCEdAnJSYg7o0RHV9lChoBkdAb+mHgxagVWgHTdUDaAhHQJybYToMa0h1fZQoaAZHQHBVEbtJFspoB00AAWgIR0CcnNdPtUn5dX2UKGgGR0Bw7nWI42jxaAdNXQFoCEdAnJ7P5pJwsHV9lChoBkdAcXtAO8TSLWgHTX0BaAhHQJyiJ11W8yx1fZQoaAZHQG+A3225QP9oB003AWgIR0Cco+JfpljFdX2UKGgGR0BuWqD/VAiWaAdNTQFoCEdAnKXRLsa86HV9lChoBkdAcNBDZDiOvWgHTWgBaAhHQJypBDw6QvJ1fZQoaAZHQHDdUUoKD01oB00UAWgIR0Ccqpv9tMwldX2UKGgGR0BxB7T/hl19aAdNSwFoCEdAnKx7JCBwuXV9lChoBkdAcEy9aEBbOmgHTWEBaAhHQJyvqde6Zpl1fZQoaAZHQFCdF7D2rXFoB00nAWgIR0CcsVII4VASdX2UKGgGR0ByY56D5CWvaAdNYgFoCEdAnLPWHgxagXV9lChoBkdAcTuQHzH0b2gHTVMBaAhHQJy32uIRAbB1fZQoaAZHQHAdV9a2WptoB01hAWgIR0Ccuno0ygwodX2UKGgGR0BwAh44ZMtcaAdNXAFoCEdAnLxzaoMrmXV9lChoBkdAR2v4EfT1CmgHTR4BaAhHQJy/XWsijcp1fZQoaAZHQG/fZCWu5jJoB00eAWgIR0CcwPuvECNkdX2UKGgGR0BrKlDneSB9aAdNPgFoCEdAnMLorJ8v3HV9lChoBkdAcIMan752yWgHTVcBaAhHQJzE/4REnb91fZQoaAZHQHD7/tQbdadoB000AWgIR0CcyBQZ4wAVdX2UKGgGR0AydDG96C17aAdLr2gIR0CcyRz/IbOvdX2UKGgGR0BwLIh/y5I6aAdNHQFoCEdAnMrdCVrylXV9lChoBkdAbEkM1jy4F2gHTSIBaAhHQJzMgQwsXi11fZQoaAZHQG5UGxt52QpoB01sAWgIR0Ccz+rMkhRqdX2UKGgGR0Bt0vx2B8QaaAdNUgFoCEdAnNHjhgmZ3XV9lChoBkdAck0BI4EOiGgHS/hoCEdAnNNiLqD9O3V9lChoBkdAPEm7jDKoymgHS9ZoCEdAnNXQWnCO3nV9lChoBkdAcGbMNtqHoGgHTW4BaAhHQJzX8k1Mue11fZQoaAZHQEA7sGgSOBFoB00BAWgIR0Cc2WbcoH9ndX2UKGgGR0Bta7F6zE75aAdNHwFoCEdAnNsJWBBiTnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |