|
import torch |
|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
self.pipeline= pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning", device=device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
return self.pipeline(inputs) |
|
|