nbeerbower commited on
Commit
6670521
1 Parent(s): 7de64bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -194
README.md CHANGED
@@ -1,201 +1,83 @@
1
  ---
2
  library_name: transformers
3
  license: apache-2.0
 
 
4
  datasets:
5
  - jondurbin/gutenberg-dpo-v0.1
6
  ---
7
 
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
-
13
-
14
- ## Model Details
15
-
16
- ### Model Description
17
-
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
-
30
- ### Model Sources [optional]
31
-
32
- <!-- Provide the basic links for the model. -->
33
-
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
-
38
- ## Uses
39
-
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
- ### Direct Use
43
-
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
-
48
- ### Downstream Use [optional]
49
-
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
-
52
- [More Information Needed]
53
-
54
- ### Out-of-Scope Use
55
-
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
-
72
- ## How to Get Started with the Model
73
-
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
77
-
78
- ## Training Details
79
-
80
- ### Training Data
81
-
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
-
86
- ### Training Procedure
87
-
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
- #### Training Hyperparameters
96
-
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
104
-
105
- ## Evaluation
106
-
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
-
111
- #### Testing Data
112
-
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
-
135
-
136
-
137
- ## Model Examination [optional]
138
-
139
- <!-- Relevant interpretability work for the model goes here -->
140
-
141
- [More Information Needed]
142
-
143
- ## Environmental Impact
144
-
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
-
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
-
155
- ## Technical Specifications [optional]
156
-
157
- ### Model Architecture and Objective
158
-
159
- [More Information Needed]
160
-
161
- ### Compute Infrastructure
162
-
163
- [More Information Needed]
164
-
165
- #### Hardware
166
-
167
- [More Information Needed]
168
-
169
- #### Software
170
-
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Authors [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Contact
200
-
201
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
  license: apache-2.0
4
+ base_model:
5
+ - nbeerbower/flammen15-mistral-7B
6
  datasets:
7
  - jondurbin/gutenberg-dpo-v0.1
8
  ---
9
 
10
+ ![image/png](https://huggingface.co/nbeerbower/flammen13X-mistral-7B/resolve/main/flammen13x.png)
11
+
12
+ # flammen15-gutenberg-DPO-v1-7B
13
+
14
+ A Mistral 7B LLM built from merging pretrained models and finetuning on Jon Durbin's Gutenberg DPO set. Flammen specializes in exceptional character roleplay, creative writing, and general intelligence
15
+
16
+ ### Method
17
+
18
+ Finetuned using an A100 on Google Colab. [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - Maxime Labonne
19
+
20
+ ### Configuration
21
+
22
+ LoRA, model, and training settings:
23
+
24
+ ```python
25
+ # LoRA configuration
26
+ peft_config = LoraConfig(
27
+ r=16,
28
+ lora_alpha=16,
29
+ lora_dropout=0.05,
30
+ bias="none",
31
+ task_type="CAUSAL_LM",
32
+ target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
33
+ )
34
+
35
+ # Model to fine-tune
36
+ model = AutoModelForCausalLM.from_pretrained(
37
+ model_name,
38
+ torch_dtype=torch.bfloat16,
39
+ load_in_4bit=True
40
+ )
41
+ model.config.use_cache = False
42
+
43
+ # Reference model
44
+ ref_model = AutoModelForCausalLM.from_pretrained(
45
+ model_name,
46
+ torch_dtype=torch.bfloat16,
47
+ load_in_4bit=True
48
+ )
49
+
50
+ # Training arguments
51
+ training_args = TrainingArguments(
52
+ per_device_train_batch_size=2,
53
+ gradient_accumulation_steps=2,
54
+ gradient_checkpointing=True,
55
+ learning_rate=2e-5,
56
+ lr_scheduler_type="cosine",
57
+ max_steps=200,
58
+ save_strategy="no",
59
+ logging_steps=1,
60
+ output_dir=new_model,
61
+ optim="paged_adamw_32bit",
62
+ warmup_steps=100,
63
+ bf16=True,
64
+ report_to="wandb",
65
+ )
66
+
67
+ # Create DPO trainer
68
+ dpo_trainer = DPOTrainer(
69
+ model,
70
+ ref_model,
71
+ args=training_args,
72
+ train_dataset=dataset,
73
+ tokenizer=tokenizer,
74
+ peft_config=peft_config,
75
+ beta=0.1,
76
+ max_prompt_length=1024,
77
+ max_length=1536,
78
+ force_use_ref_model=True
79
+ )
80
+
81
+ # Fine-tune model with DPO
82
+ dpo_trainer.train()
83
+ ```