initial model commit
Browse files- README.md +163 -0
- loss.tsv +132 -0
- pytorch_model.bin +3 -0
- training.log +0 -0
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
datasets:
|
8 |
+
- ontonotes
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## English Universal Part-of-Speech Tagging in Flair (fast model)
|
13 |
+
|
14 |
+
This is the fast universal part-of-speech tagging model for English that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **98,47** (Ontonotes)
|
17 |
+
|
18 |
+
Predicts universal POS tags:
|
19 |
+
|
20 |
+
| **tag** | **meaning** |
|
21 |
+
|---------------------------------|-----------|
|
22 |
+
|ADJ | adjective |
|
23 |
+
| ADP | adposition |
|
24 |
+
| ADV | adverb |
|
25 |
+
| AUX | auxiliary |
|
26 |
+
| CCONJ | coordinating conjunction |
|
27 |
+
| DET | determiner |
|
28 |
+
| INTJ | interjection |
|
29 |
+
| NOUN | noun |
|
30 |
+
| NUM | numeral |
|
31 |
+
| PART | particle |
|
32 |
+
| PRON | pronoun |
|
33 |
+
| PROPN | proper noun |
|
34 |
+
| PUNCT | punctuation |
|
35 |
+
| SCONJ | subordinating conjunction |
|
36 |
+
| SYM | symbol |
|
37 |
+
| VERB | verb |
|
38 |
+
| X | other |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
### Demo: How to use in Flair
|
47 |
+
|
48 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
49 |
+
|
50 |
+
```python
|
51 |
+
from flair.data import Sentence
|
52 |
+
from flair.models import SequenceTagger
|
53 |
+
|
54 |
+
# load tagger
|
55 |
+
tagger = SequenceTagger.load("flair/upos-english-fast")
|
56 |
+
|
57 |
+
# make example sentence
|
58 |
+
sentence = Sentence("I love Berlin.")
|
59 |
+
|
60 |
+
# predict NER tags
|
61 |
+
tagger.predict(sentence)
|
62 |
+
|
63 |
+
# print sentence
|
64 |
+
print(sentence)
|
65 |
+
|
66 |
+
# print predicted NER spans
|
67 |
+
print('The following NER tags are found:')
|
68 |
+
# iterate over entities and print
|
69 |
+
for entity in sentence.get_spans('pos'):
|
70 |
+
print(entity)
|
71 |
+
|
72 |
+
```
|
73 |
+
|
74 |
+
This yields the following output:
|
75 |
+
```
|
76 |
+
Span [1]: "I" [− Labels: PRON (0.9996)]
|
77 |
+
Span [2]: "love" [− Labels: VERB (1.0)]
|
78 |
+
Span [3]: "Berlin" [− Labels: PROPN (0.9986)]
|
79 |
+
Span [4]: "." [− Labels: PUNCT (1.0)]
|
80 |
+
```
|
81 |
+
|
82 |
+
So, the word "*I*" is labeled as a **pronoun** (PRON), "*love*" is labeled as a **verb** (VERB) and "*Berlin*" is labeled as a **proper noun** (PROPN) in the sentence "*TheI love Berlin*".
|
83 |
+
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
### Training: Script to train this model
|
88 |
+
|
89 |
+
The following Flair script was used to train this model:
|
90 |
+
|
91 |
+
```python
|
92 |
+
from flair.data import Corpus
|
93 |
+
from flair.datasets import ColumnCorpus
|
94 |
+
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
95 |
+
|
96 |
+
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
|
97 |
+
corpus: Corpus = ColumnCorpus(
|
98 |
+
"resources/tasks/onto-ner",
|
99 |
+
column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
|
100 |
+
tag_to_bioes="ner",
|
101 |
+
)
|
102 |
+
|
103 |
+
# 2. what tag do we want to predict?
|
104 |
+
tag_type = 'upos'
|
105 |
+
|
106 |
+
# 3. make the tag dictionary from the corpus
|
107 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
108 |
+
|
109 |
+
# 4. initialize each embedding we use
|
110 |
+
embedding_types = [
|
111 |
+
|
112 |
+
# contextual string embeddings, forward
|
113 |
+
FlairEmbeddings('news-forward-fast'),
|
114 |
+
|
115 |
+
# contextual string embeddings, backward
|
116 |
+
FlairEmbeddings('news-backward-fast'),
|
117 |
+
]
|
118 |
+
|
119 |
+
# embedding stack consists of Flair and GloVe embeddings
|
120 |
+
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
121 |
+
|
122 |
+
# 5. initialize sequence tagger
|
123 |
+
from flair.models import SequenceTagger
|
124 |
+
|
125 |
+
tagger = SequenceTagger(hidden_size=256,
|
126 |
+
embeddings=embeddings,
|
127 |
+
tag_dictionary=tag_dictionary,
|
128 |
+
tag_type=tag_type)
|
129 |
+
|
130 |
+
# 6. initialize trainer
|
131 |
+
from flair.trainers import ModelTrainer
|
132 |
+
|
133 |
+
trainer = ModelTrainer(tagger, corpus)
|
134 |
+
|
135 |
+
# 7. run training
|
136 |
+
trainer.train('resources/taggers/upos-english-fast',
|
137 |
+
train_with_dev=True,
|
138 |
+
max_epochs=150)
|
139 |
+
```
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
---
|
144 |
+
|
145 |
+
### Cite
|
146 |
+
|
147 |
+
Please cite the following paper when using this model.
|
148 |
+
|
149 |
+
```
|
150 |
+
@inproceedings{akbik2018coling,
|
151 |
+
title={Contextual String Embeddings for Sequence Labeling},
|
152 |
+
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
|
153 |
+
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
|
154 |
+
pages = {1638--1649},
|
155 |
+
year = {2018}
|
156 |
+
}
|
157 |
+
```
|
158 |
+
|
159 |
+
---
|
160 |
+
|
161 |
+
### Issues?
|
162 |
+
|
163 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
0 17:03:39 0 0.1000 3.8983645198929984
|
3 |
+
1 17:11:32 0 0.1000 2.396464760978267
|
4 |
+
2 17:19:17 0 0.1000 2.1225894081367636
|
5 |
+
3 17:27:11 0 0.1000 1.9884647013443821
|
6 |
+
4 17:35:04 0 0.1000 1.885558801484558
|
7 |
+
5 17:42:58 0 0.1000 1.8396147863370067
|
8 |
+
6 17:50:52 0 0.1000 1.7672407321210177
|
9 |
+
7 17:58:33 0 0.1000 1.7209206173217522
|
10 |
+
8 18:06:14 0 0.1000 1.684758366188913
|
11 |
+
9 18:13:54 0 0.1000 1.675738244360348
|
12 |
+
10 18:21:33 0 0.1000 1.6346709968683855
|
13 |
+
11 18:29:15 0 0.1000 1.5976093570016465
|
14 |
+
12 18:37:02 0 0.1000 1.572903771839052
|
15 |
+
13 18:44:47 0 0.1000 1.5621724839255495
|
16 |
+
14 18:52:31 0 0.1000 1.5344491067360033
|
17 |
+
15 19:00:09 0 0.1000 1.5280954311141428
|
18 |
+
16 19:07:50 0 0.1000 1.5018526020027556
|
19 |
+
17 19:15:29 1 0.1000 1.505718067726999
|
20 |
+
18 19:23:08 0 0.1000 1.4736719750233416
|
21 |
+
19 19:30:50 1 0.1000 1.4839579892720816
|
22 |
+
20 19:38:35 0 0.1000 1.4585183224250686
|
23 |
+
21 19:46:19 1 0.1000 1.4610416818902177
|
24 |
+
22 19:54:12 0 0.1000 1.437192275220493
|
25 |
+
23 20:01:52 0 0.1000 1.4222804964825793
|
26 |
+
24 20:09:33 0 0.1000 1.4003380132058882
|
27 |
+
25 20:17:17 1 0.1000 1.4161622376374479
|
28 |
+
26 20:24:54 2 0.1000 1.4020970809572149
|
29 |
+
27 20:32:32 0 0.1000 1.3987249116852598
|
30 |
+
28 20:40:11 0 0.1000 1.3625548289969283
|
31 |
+
29 20:47:51 1 0.1000 1.381220668767983
|
32 |
+
30 20:55:30 2 0.1000 1.3701620033552062
|
33 |
+
31 21:03:17 3 0.1000 1.3630763605293237
|
34 |
+
32 21:11:05 0 0.1000 1.3467498509051665
|
35 |
+
33 21:18:54 1 0.1000 1.3495412202095085
|
36 |
+
34 21:26:44 0 0.1000 1.340426192193661
|
37 |
+
35 21:34:35 0 0.1000 1.3255774740228112
|
38 |
+
36 21:42:28 1 0.1000 1.341141459649464
|
39 |
+
37 21:50:16 2 0.1000 1.3301069232652771
|
40 |
+
38 21:58:05 0 0.1000 1.3155438300011293
|
41 |
+
39 22:05:53 1 0.1000 1.3180485034101415
|
42 |
+
40 22:13:33 0 0.1000 1.3101363613583008
|
43 |
+
41 22:21:15 1 0.1000 1.3239353564212908
|
44 |
+
42 22:28:55 0 0.1000 1.2985683835677382
|
45 |
+
43 22:36:36 1 0.1000 1.2987655120300796
|
46 |
+
44 22:44:16 0 0.1000 1.293294859140549
|
47 |
+
45 22:51:55 1 0.1000 1.2934898600825724
|
48 |
+
46 22:59:35 0 0.1000 1.2742974282997959
|
49 |
+
47 23:07:16 0 0.1000 1.257929092420722
|
50 |
+
48 23:14:57 1 0.1000 1.2636124875410548
|
51 |
+
49 23:22:35 2 0.1000 1.2605103574271472
|
52 |
+
50 23:30:15 3 0.1000 1.2628181801202163
|
53 |
+
51 23:37:55 4 0.1000 1.2682071375397017
|
54 |
+
52 23:45:35 0 0.0500 1.2192658351502328
|
55 |
+
53 23:53:15 0 0.0500 1.189723878941446
|
56 |
+
54 00:00:56 0 0.0500 1.181310292977207
|
57 |
+
55 00:08:36 1 0.0500 1.1813142526599596
|
58 |
+
56 00:16:15 0 0.0500 1.1490525012646082
|
59 |
+
57 00:24:04 1 0.0500 1.150567943037681
|
60 |
+
58 00:31:59 2 0.0500 1.153844450498527
|
61 |
+
59 00:39:53 3 0.0500 1.1547138257521503
|
62 |
+
60 00:47:36 0 0.0500 1.138099388097817
|
63 |
+
61 00:55:17 1 0.0500 1.1522783655265592
|
64 |
+
62 01:03:07 0 0.0500 1.1201619118114687
|
65 |
+
63 01:11:03 1 0.0500 1.140103389699504
|
66 |
+
64 01:18:57 2 0.0500 1.1306282293909
|
67 |
+
65 01:26:43 3 0.0500 1.1392165621946442
|
68 |
+
66 01:34:30 4 0.0500 1.1320033756404553
|
69 |
+
67 01:42:13 0 0.0250 1.0931724692290683
|
70 |
+
68 01:50:05 1 0.0250 1.093446401728774
|
71 |
+
69 01:57:59 0 0.0250 1.0766996851900839
|
72 |
+
70 02:05:47 1 0.0250 1.085443768231374
|
73 |
+
71 02:13:32 2 0.0250 1.0840452198824793
|
74 |
+
72 02:21:24 3 0.0250 1.0943272675770634
|
75 |
+
73 02:29:13 0 0.0250 1.0741095490050765
|
76 |
+
74 02:36:59 1 0.0250 1.0775160627657512
|
77 |
+
75 02:44:45 0 0.0250 1.0723835660601562
|
78 |
+
76 02:52:28 0 0.0250 1.0675190647593085
|
79 |
+
77 03:00:14 0 0.0250 1.062752323026927
|
80 |
+
78 03:07:55 1 0.0250 1.0638396440924338
|
81 |
+
79 03:15:34 0 0.0250 1.0551368798849718
|
82 |
+
80 03:23:13 0 0.0250 1.0540687316993498
|
83 |
+
81 03:30:54 0 0.0250 1.0486293900575279
|
84 |
+
82 03:38:39 1 0.0250 1.0578650972190893
|
85 |
+
83 03:46:29 2 0.0250 1.050876642150699
|
86 |
+
84 03:54:21 0 0.0250 1.0444189010476166
|
87 |
+
85 04:02:17 0 0.0250 1.036741197986423
|
88 |
+
86 04:10:04 1 0.0250 1.0422700380716683
|
89 |
+
87 04:17:57 2 0.0250 1.053200504015077
|
90 |
+
88 04:25:50 3 0.0250 1.0567198398428144
|
91 |
+
89 04:33:41 4 0.0250 1.038592992784842
|
92 |
+
90 04:41:31 1 0.0125 1.0402668333278513
|
93 |
+
91 04:49:15 0 0.0125 1.0200082490354214
|
94 |
+
92 04:56:57 1 0.0125 1.0332945613703637
|
95 |
+
93 05:04:44 2 0.0125 1.0235844095023172
|
96 |
+
94 05:12:38 3 0.0125 1.030887721619516
|
97 |
+
95 05:20:33 4 0.0125 1.03034149728856
|
98 |
+
96 05:28:29 1 0.0063 1.032665410379194
|
99 |
+
97 05:36:24 0 0.0063 1.0145184545584445
|
100 |
+
98 05:44:18 0 0.0063 1.004028284752144
|
101 |
+
99 05:52:14 1 0.0063 1.0066242653356408
|
102 |
+
100 06:00:01 2 0.0063 1.0042478304876472
|
103 |
+
101 06:07:45 3 0.0063 1.0221682896141735
|
104 |
+
102 06:15:28 4 0.0063 1.0171712939975397
|
105 |
+
103 06:23:10 1 0.0031 1.0051458630696783
|
106 |
+
104 06:30:52 0 0.0031 0.9894583106828185
|
107 |
+
105 06:38:35 1 0.0031 0.9949013568826441
|
108 |
+
106 06:46:21 2 0.0031 1.0099847611166397
|
109 |
+
107 06:54:17 3 0.0031 1.0110677263646755
|
110 |
+
108 07:02:09 4 0.0031 0.9900631292529826
|
111 |
+
109 07:09:53 1 0.0016 0.9965992866034777
|
112 |
+
110 07:17:39 0 0.0016 0.988067799041856
|
113 |
+
111 07:25:26 1 0.0016 1.002729972747137
|
114 |
+
112 07:33:17 2 0.0016 1.0075599195597307
|
115 |
+
113 07:40:59 3 0.0016 0.9934051743318449
|
116 |
+
114 07:48:47 4 0.0016 0.9908848639141838
|
117 |
+
115 07:56:32 1 0.0008 0.9981947860515342
|
118 |
+
116 08:04:19 2 0.0008 0.9895183097191577
|
119 |
+
117 08:11:59 3 0.0008 0.9920743883836944
|
120 |
+
118 08:19:38 4 0.0008 0.9939175610103698
|
121 |
+
119 08:27:18 1 0.0004 1.0007407332141445
|
122 |
+
120 08:34:58 2 0.0004 1.0047922001807195
|
123 |
+
121 08:42:37 0 0.0004 0.9872947578835037
|
124 |
+
122 08:50:15 0 0.0004 0.9852443703671672
|
125 |
+
123 08:57:54 1 0.0004 0.9936418686610348
|
126 |
+
124 09:05:37 2 0.0004 0.9901605238104766
|
127 |
+
125 09:13:23 3 0.0004 0.9907275987008832
|
128 |
+
126 09:21:09 4 0.0004 0.99081547033112
|
129 |
+
127 09:28:51 1 0.0002 0.9894531191295048
|
130 |
+
128 09:36:34 2 0.0002 0.9955960737309366
|
131 |
+
129 09:44:20 3 0.0002 0.9950949703578679
|
132 |
+
130 09:52:13 4 0.0002 1.0062029107730344
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4395e8af6f93dab948fb498ab07906a987c2cb63c2fef94472a0ee26092a2023
|
3 |
+
size 75175004
|
training.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|