feishen29 commited on
Commit
334fc8f
1 Parent(s): ca0d280

Delete sd-vae-ft-mse

Browse files
sd-vae-ft-mse/README.md DELETED
@@ -1,83 +0,0 @@
1
- ---
2
- license: mit
3
- tags:
4
- - stable-diffusion
5
- - stable-diffusion-diffusers
6
- inference: false
7
- ---
8
- # Improved Autoencoders
9
-
10
- ## Utilizing
11
- These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/stabilityai/sd-vae-ft-mse-original).
12
-
13
- #### How to use with 🧨 diffusers
14
- You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline`
15
- ```py
16
- from diffusers.models import AutoencoderKL
17
- from diffusers import StableDiffusionPipeline
18
-
19
- model = "CompVis/stable-diffusion-v1-4"
20
- vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
21
- pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae)
22
- ```
23
-
24
- ## Decoder Finetuning
25
- We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models) on a 1:1 ratio of [LAION-Aesthetics](https://laion.ai/blog/laion-aesthetics/) and LAION-Humans, an unreleased subset containing only SFW images of humans. The intent was to fine-tune on the Stable Diffusion training set (the autoencoder was originally trained on OpenImages) but also enrich the dataset with images of humans to improve the reconstruction of faces.
26
- The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. It uses the same loss configuration as the original checkpoint (L1 + LPIPS).
27
- The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a different loss, with more emphasis
28
- on MSE reconstruction (MSE + 0.1 * LPIPS). It produces somewhat ``smoother'' outputs. The batch size for both versions was 192 (16 A100s, batch size 12 per GPU).
29
- To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder.
30
-
31
- _Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_
32
-
33
- ## Evaluation
34
- ### COCO 2017 (256x256, val, 5000 images)
35
- | Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
36
- |----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
37
- | | | | | | | | |
38
- | original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
39
- | ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
40
- | ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
41
-
42
-
43
- ### LAION-Aesthetics 5+ (256x256, subset, 10000 images)
44
- | Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
45
- |----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
46
- | | | | | | | | |
47
- | original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
48
- | ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
49
- | ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
50
-
51
-
52
- ### Visual
53
- _Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._
54
-
55
- <p align="center">
56
- <br>
57
- <b>
58
- 256x256: ft-EMA (left), ft-MSE (middle), original (right)</b>
59
- </p>
60
-
61
- <p align="center">
62
- <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png />
63
- </p>
64
-
65
- <p align="center">
66
- <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png />
67
- </p>
68
-
69
- <p align="center">
70
- <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png />
71
- </p>
72
-
73
- <p align="center">
74
- <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png />
75
- </p>
76
-
77
- <p align="center">
78
- <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png />
79
- </p>
80
-
81
- <p align="center">
82
- <img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png />
83
- </p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sd-vae-ft-mse/config.json DELETED
@@ -1,29 +0,0 @@
1
- {
2
- "_class_name": "AutoencoderKL",
3
- "_diffusers_version": "0.4.2",
4
- "act_fn": "silu",
5
- "block_out_channels": [
6
- 128,
7
- 256,
8
- 512,
9
- 512
10
- ],
11
- "down_block_types": [
12
- "DownEncoderBlock2D",
13
- "DownEncoderBlock2D",
14
- "DownEncoderBlock2D",
15
- "DownEncoderBlock2D"
16
- ],
17
- "in_channels": 3,
18
- "latent_channels": 4,
19
- "layers_per_block": 2,
20
- "norm_num_groups": 32,
21
- "out_channels": 3,
22
- "sample_size": 256,
23
- "up_block_types": [
24
- "UpDecoderBlock2D",
25
- "UpDecoderBlock2D",
26
- "UpDecoderBlock2D",
27
- "UpDecoderBlock2D"
28
- ]
29
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sd-vae-ft-mse/diffusion_pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1b4889b6b1d4ce7ae320a02dedaeff1780ad77d415ea0d744b476155c6377ddc
3
- size 334707217
 
 
 
 
sd-vae-ft-mse/diffusion_pytorch_model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a1d993488569e928462932c8c38a0760b874d166399b14414135bd9c42df5815
3
- size 334643276