patrickvonplaten commited on
Commit
5f51a7a
1 Parent(s): 099c0b4

upload readme

Browse files
Files changed (2) hide show
  1. README.md +552 -1
  2. langs.txt +256 -0
README.md CHANGED
@@ -1,4 +1,555 @@
1
  ---
2
  tags:
3
  - mms
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
  - mms
4
+ language:
5
+ - ab
6
+ - af
7
+ - ak
8
+ - am
9
+ - ar
10
+ - as
11
+ - av
12
+ - ay
13
+ - az
14
+ - ba
15
+ - bm
16
+ - be
17
+ - bn
18
+ - bi
19
+ - bo
20
+ - sh
21
+ - br
22
+ - bg
23
+ - ca
24
+ - cs
25
+ - ce
26
+ - cv
27
+ - ku
28
+ - cy
29
+ - da
30
+ - de
31
+ - dv
32
+ - dz
33
+ - el
34
+ - en
35
+ - eo
36
+ - et
37
+ - eu
38
+ - ee
39
+ - fo
40
+ - fa
41
+ - fj
42
+ - fi
43
+ - fr
44
+ - fy
45
+ - ff
46
+ - ga
47
+ - gl
48
+ - gn
49
+ - gu
50
+ - zh
51
+ - ht
52
+ - ha
53
+ - he
54
+ - hi
55
+ - sh
56
+ - hu
57
+ - hy
58
+ - ig
59
+ - ia
60
+ - ms
61
+ - is
62
+ - it
63
+ - jv
64
+ - ja
65
+ - kn
66
+ - ka
67
+ - kk
68
+ - kr
69
+ - km
70
+ - ki
71
+ - rw
72
+ - ky
73
+ - ko
74
+ - kv
75
+ - lo
76
+ - la
77
+ - lv
78
+ - ln
79
+ - lt
80
+ - lb
81
+ - lg
82
+ - mh
83
+ - ml
84
+ - mr
85
+ - ms
86
+ - mk
87
+ - mg
88
+ - mt
89
+ - mn
90
+ - mi
91
+ - my
92
+ - zh
93
+ - nl
94
+ - 'no'
95
+ - 'no'
96
+ - ne
97
+ - ny
98
+ - oc
99
+ - om
100
+ - or
101
+ - os
102
+ - pa
103
+ - pl
104
+ - pt
105
+ - ms
106
+ - ps
107
+ - qu
108
+ - qu
109
+ - qu
110
+ - qu
111
+ - qu
112
+ - qu
113
+ - qu
114
+ - qu
115
+ - qu
116
+ - qu
117
+ - qu
118
+ - qu
119
+ - qu
120
+ - qu
121
+ - qu
122
+ - qu
123
+ - qu
124
+ - qu
125
+ - qu
126
+ - qu
127
+ - qu
128
+ - qu
129
+ - ro
130
+ - rn
131
+ - ru
132
+ - sg
133
+ - sk
134
+ - sl
135
+ - sm
136
+ - sn
137
+ - sd
138
+ - so
139
+ - es
140
+ - sq
141
+ - su
142
+ - sv
143
+ - sw
144
+ - ta
145
+ - tt
146
+ - te
147
+ - tg
148
+ - tl
149
+ - th
150
+ - ti
151
+ - ts
152
+ - tr
153
+ - uk
154
+ - ms
155
+ - vi
156
+ - wo
157
+ - xh
158
+ - ms
159
+ - yo
160
+ - ms
161
+ - zu
162
+ - za
163
+ license: cc-by-nc-4.0
164
+ datasets:
165
+ - google/fleurs
166
+ metrics:
167
+ - acc
168
+ ---
169
+
170
+ # Massively Multilingual Speech (MMS) - Finetuned LID
171
+
172
+ This checkpoint is a model fine-tuned for speech language identification (LID) and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
173
+ This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and classifies raw audio input to a probability distribution over 256 output classes (each class representing a language).
174
+ The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 256 languages.
175
+
176
+ ## Table Of Content
177
+
178
+ - [Example](#example)
179
+ - [Supported Languages](#supported-languages)
180
+ - [Model details](#model-details)
181
+ - [Additional links](#additional-links)
182
+
183
+ ## Example
184
+
185
+ This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to identify
186
+ the spoken language of an audio. It can recognize the [following 256 languages](#supported-languages).
187
+
188
+ Let's look at a simple example.
189
+
190
+ First, we install transformers and some other libraries
191
+ ```
192
+ pip install torch accelerate torchaudio datasets
193
+ pip install --upgrade transformers
194
+ ````
195
+
196
+ **Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
197
+ is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
198
+ source:
199
+ ```
200
+ pip install git+https://github.com/huggingface/transformers.git
201
+ ```
202
+
203
+ Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
204
+
205
+ ```py
206
+ from datasets import load_dataset, Audio
207
+
208
+ # English
209
+ stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
210
+ stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
211
+ en_sample = next(iter(stream_data))["audio"]["array"]
212
+
213
+ # Arabic
214
+ stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True)
215
+ stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
216
+ ar_sample = next(iter(stream_data))["audio"]["array"]
217
+ ```
218
+
219
+ Next, we load the model and processor
220
+
221
+ ```py
222
+ from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
223
+ import torch
224
+
225
+ model_id = "facebook/mms-lid-256"
226
+
227
+ processor = AutoFeatureExtractor.from_pretrained(model_id)
228
+ model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
229
+ ```
230
+
231
+ Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition)
232
+
233
+ ```py
234
+ # English
235
+ inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
236
+
237
+ with torch.no_grad():
238
+ outputs = model(**inputs).logits
239
+
240
+ lang_id = torch.argmax(outputs, dim=-1)[0].item()
241
+ detected_lang = model.config.id2label[lang_id]
242
+ # 'eng'
243
+
244
+ # Arabic
245
+ inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt")
246
+
247
+ with torch.no_grad():
248
+ outputs = model(**inputs).logits
249
+
250
+ lang_id = torch.argmax(outputs, dim=-1)[0].item()
251
+ detected_lang = model.config.id2label[lang_id]
252
+ # 'ara'
253
+ ```
254
+
255
+ To see all the supported languages of a checkpoint, you can print out the language ids as follows:
256
+ ```py
257
+ processor.id2label.values()
258
+ ```
259
+
260
+ For more details, about the architecture please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
261
+
262
+ ## Supported Languages
263
+
264
+ This model supports 256 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
265
+ You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
266
+ <details>
267
+ <summary>Click to toggle</summary>
268
+
269
+ - ara
270
+ - cmn
271
+ - eng
272
+ - spa
273
+ - fra
274
+ - mlg
275
+ - swe
276
+ - por
277
+ - vie
278
+ - ful
279
+ - sun
280
+ - asm
281
+ - ben
282
+ - zlm
283
+ - kor
284
+ - ind
285
+ - hin
286
+ - tuk
287
+ - urd
288
+ - aze
289
+ - slv
290
+ - mon
291
+ - hau
292
+ - tel
293
+ - swh
294
+ - bod
295
+ - rus
296
+ - tur
297
+ - heb
298
+ - mar
299
+ - som
300
+ - tgl
301
+ - tat
302
+ - tha
303
+ - cat
304
+ - ron
305
+ - mal
306
+ - bel
307
+ - pol
308
+ - yor
309
+ - nld
310
+ - bul
311
+ - hat
312
+ - afr
313
+ - isl
314
+ - amh
315
+ - tam
316
+ - hun
317
+ - hrv
318
+ - lit
319
+ - cym
320
+ - fas
321
+ - mkd
322
+ - ell
323
+ - bos
324
+ - deu
325
+ - sqi
326
+ - jav
327
+ - kmr
328
+ - nob
329
+ - uzb
330
+ - snd
331
+ - lat
332
+ - nya
333
+ - grn
334
+ - mya
335
+ - orm
336
+ - lin
337
+ - hye
338
+ - yue
339
+ - pan
340
+ - jpn
341
+ - kaz
342
+ - npi
343
+ - kik
344
+ - kat
345
+ - guj
346
+ - kan
347
+ - tgk
348
+ - ukr
349
+ - ces
350
+ - lav
351
+ - bak
352
+ - khm
353
+ - fao
354
+ - glg
355
+ - ltz
356
+ - xog
357
+ - lao
358
+ - mlt
359
+ - sin
360
+ - aka
361
+ - sna
362
+ - ita
363
+ - srp
364
+ - mri
365
+ - nno
366
+ - pus
367
+ - eus
368
+ - ory
369
+ - lug
370
+ - bre
371
+ - luo
372
+ - slk
373
+ - ewe
374
+ - fin
375
+ - rif
376
+ - dan
377
+ - yid
378
+ - yao
379
+ - mos
380
+ - hne
381
+ - est
382
+ - dyu
383
+ - bam
384
+ - uig
385
+ - sck
386
+ - tso
387
+ - mup
388
+ - ctg
389
+ - ceb
390
+ - war
391
+ - bbc
392
+ - vmw
393
+ - sid
394
+ - tpi
395
+ - mag
396
+ - san
397
+ - kri
398
+ - lon
399
+ - kir
400
+ - run
401
+ - ubl
402
+ - kin
403
+ - rkt
404
+ - xmm
405
+ - tir
406
+ - mai
407
+ - nan
408
+ - nyn
409
+ - bcc
410
+ - hak
411
+ - suk
412
+ - bem
413
+ - rmy
414
+ - awa
415
+ - pcm
416
+ - bgc
417
+ - shn
418
+ - oci
419
+ - wol
420
+ - bci
421
+ - kab
422
+ - ilo
423
+ - bcl
424
+ - haw
425
+ - mad
426
+ - nod
427
+ - sag
428
+ - sas
429
+ - jam
430
+ - mey
431
+ - shi
432
+ - hil
433
+ - ace
434
+ - kam
435
+ - min
436
+ - umb
437
+ - hno
438
+ - ban
439
+ - syl
440
+ - bxg
441
+ - xho
442
+ - mww
443
+ - epo
444
+ - tzm
445
+ - zul
446
+ - ibo
447
+ - abk
448
+ - guz
449
+ - ckb
450
+ - knc
451
+ - nso
452
+ - bho
453
+ - dje
454
+ - tiv
455
+ - gle
456
+ - lua
457
+ - skr
458
+ - bto
459
+ - kea
460
+ - glk
461
+ - ast
462
+ - sat
463
+ - ktu
464
+ - bhb
465
+ - emk
466
+ - kng
467
+ - kmb
468
+ - tsn
469
+ - gom
470
+ - ven
471
+ - sco
472
+ - glv
473
+ - sot
474
+ - sou
475
+ - gno
476
+ - nde
477
+ - bjn
478
+ - ina
479
+ - fmu
480
+ - esg
481
+ - wes
482
+ - pnb
483
+ - phr
484
+ - mui
485
+ - bug
486
+ - mrr
487
+ - kas
488
+ - lir
489
+ - vah
490
+ - ssw
491
+ - rwr
492
+ - pcc
493
+ - hms
494
+ - wbr
495
+ - swv
496
+ - mtr
497
+ - haz
498
+ - aii
499
+ - bns
500
+ - msi
501
+ - wuu
502
+ - hsn
503
+ - bgp
504
+ - tts
505
+ - lmn
506
+ - dcc
507
+ - bew
508
+ - bjj
509
+ - ibb
510
+ - tji
511
+ - hoj
512
+ - cpx
513
+ - cdo
514
+ - daq
515
+ - mut
516
+ - nap
517
+ - czh
518
+ - gdx
519
+ - sdh
520
+ - scn
521
+ - mnp
522
+ - bar
523
+ - mzn
524
+ - gsw
525
+
526
+ </details>
527
+
528
+ ## Model details
529
+
530
+ - **Developed by:** Vineel Pratap et al.
531
+ - **Model type:** Multi-Lingual Automatic Speech Recognition model
532
+ - **Language(s):** 256 languages, see [supported languages](#supported-languages)
533
+ - **License:** CC-BY-NC 4.0 license
534
+ - **Num parameters**: 1 billion
535
+ - **Audio sampling rate**: 16,000 kHz
536
+ - **Cite as:**
537
+
538
+ @article{pratap2023mms,
539
+ title={Scaling Speech Technology to 1,000+ Languages},
540
+ author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
541
+ journal={arXiv},
542
+ year={2023}
543
+ }
544
+
545
+ ## Additional Links
546
+
547
+ - [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
548
+ - [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
549
+ - [Paper](https://arxiv.org/abs/2305.13516)
550
+ - [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
551
+ - [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
552
+ - MMS base checkpoints:
553
+ - [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
554
+ - [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
555
+ - [Official Space](https://huggingface.co/spaces/facebook/MMS)
langs.txt ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - ara
2
+ - cmn
3
+ - eng
4
+ - spa
5
+ - fra
6
+ - mlg
7
+ - swe
8
+ - por
9
+ - vie
10
+ - ful
11
+ - sun
12
+ - asm
13
+ - ben
14
+ - zlm
15
+ - kor
16
+ - ind
17
+ - hin
18
+ - tuk
19
+ - urd
20
+ - aze
21
+ - slv
22
+ - mon
23
+ - hau
24
+ - tel
25
+ - swh
26
+ - bod
27
+ - rus
28
+ - tur
29
+ - heb
30
+ - mar
31
+ - som
32
+ - tgl
33
+ - tat
34
+ - tha
35
+ - cat
36
+ - ron
37
+ - mal
38
+ - bel
39
+ - pol
40
+ - yor
41
+ - nld
42
+ - bul
43
+ - hat
44
+ - afr
45
+ - isl
46
+ - amh
47
+ - tam
48
+ - hun
49
+ - hrv
50
+ - lit
51
+ - cym
52
+ - fas
53
+ - mkd
54
+ - ell
55
+ - bos
56
+ - deu
57
+ - sqi
58
+ - jav
59
+ - kmr
60
+ - nob
61
+ - uzb
62
+ - snd
63
+ - lat
64
+ - nya
65
+ - grn
66
+ - mya
67
+ - orm
68
+ - lin
69
+ - hye
70
+ - yue
71
+ - pan
72
+ - jpn
73
+ - kaz
74
+ - npi
75
+ - kik
76
+ - kat
77
+ - guj
78
+ - kan
79
+ - tgk
80
+ - ukr
81
+ - ces
82
+ - lav
83
+ - bak
84
+ - khm
85
+ - fao
86
+ - glg
87
+ - ltz
88
+ - xog
89
+ - lao
90
+ - mlt
91
+ - sin
92
+ - aka
93
+ - sna
94
+ - ita
95
+ - srp
96
+ - mri
97
+ - nno
98
+ - pus
99
+ - eus
100
+ - ory
101
+ - lug
102
+ - bre
103
+ - luo
104
+ - slk
105
+ - ewe
106
+ - fin
107
+ - rif
108
+ - dan
109
+ - yid
110
+ - yao
111
+ - mos
112
+ - hne
113
+ - est
114
+ - dyu
115
+ - bam
116
+ - uig
117
+ - sck
118
+ - tso
119
+ - mup
120
+ - ctg
121
+ - ceb
122
+ - war
123
+ - bbc
124
+ - vmw
125
+ - sid
126
+ - tpi
127
+ - mag
128
+ - san
129
+ - kri
130
+ - lon
131
+ - kir
132
+ - run
133
+ - ubl
134
+ - kin
135
+ - rkt
136
+ - xmm
137
+ - tir
138
+ - mai
139
+ - nan
140
+ - nyn
141
+ - bcc
142
+ - hak
143
+ - suk
144
+ - bem
145
+ - rmy
146
+ - awa
147
+ - pcm
148
+ - bgc
149
+ - shn
150
+ - oci
151
+ - wol
152
+ - bci
153
+ - kab
154
+ - ilo
155
+ - bcl
156
+ - haw
157
+ - mad
158
+ - nod
159
+ - sag
160
+ - sas
161
+ - jam
162
+ - mey
163
+ - shi
164
+ - hil
165
+ - ace
166
+ - kam
167
+ - min
168
+ - umb
169
+ - hno
170
+ - ban
171
+ - syl
172
+ - bxg
173
+ - xho
174
+ - mww
175
+ - epo
176
+ - tzm
177
+ - zul
178
+ - ibo
179
+ - abk
180
+ - guz
181
+ - ckb
182
+ - knc
183
+ - nso
184
+ - bho
185
+ - dje
186
+ - tiv
187
+ - gle
188
+ - lua
189
+ - skr
190
+ - bto
191
+ - kea
192
+ - glk
193
+ - ast
194
+ - sat
195
+ - ktu
196
+ - bhb
197
+ - emk
198
+ - kng
199
+ - kmb
200
+ - tsn
201
+ - gom
202
+ - ven
203
+ - sco
204
+ - glv
205
+ - sot
206
+ - sou
207
+ - gno
208
+ - nde
209
+ - bjn
210
+ - ina
211
+ - fmu
212
+ - esg
213
+ - wes
214
+ - pnb
215
+ - phr
216
+ - mui
217
+ - bug
218
+ - mrr
219
+ - kas
220
+ - lir
221
+ - vah
222
+ - ssw
223
+ - rwr
224
+ - pcc
225
+ - hms
226
+ - wbr
227
+ - swv
228
+ - mtr
229
+ - haz
230
+ - aii
231
+ - bns
232
+ - msi
233
+ - wuu
234
+ - hsn
235
+ - bgp
236
+ - tts
237
+ - lmn
238
+ - dcc
239
+ - bew
240
+ - bjj
241
+ - ibb
242
+ - tji
243
+ - hoj
244
+ - cpx
245
+ - cdo
246
+ - daq
247
+ - mut
248
+ - nap
249
+ - czh
250
+ - gdx
251
+ - sdh
252
+ - scn
253
+ - mnp
254
+ - bar
255
+ - mzn
256
+ - gsw