patrickvonplaten
commited on
Commit
•
5f51a7a
1
Parent(s):
099c0b4
upload readme
Browse files
README.md
CHANGED
@@ -1,4 +1,555 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- mms
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- mms
|
4 |
+
language:
|
5 |
+
- ab
|
6 |
+
- af
|
7 |
+
- ak
|
8 |
+
- am
|
9 |
+
- ar
|
10 |
+
- as
|
11 |
+
- av
|
12 |
+
- ay
|
13 |
+
- az
|
14 |
+
- ba
|
15 |
+
- bm
|
16 |
+
- be
|
17 |
+
- bn
|
18 |
+
- bi
|
19 |
+
- bo
|
20 |
+
- sh
|
21 |
+
- br
|
22 |
+
- bg
|
23 |
+
- ca
|
24 |
+
- cs
|
25 |
+
- ce
|
26 |
+
- cv
|
27 |
+
- ku
|
28 |
+
- cy
|
29 |
+
- da
|
30 |
+
- de
|
31 |
+
- dv
|
32 |
+
- dz
|
33 |
+
- el
|
34 |
+
- en
|
35 |
+
- eo
|
36 |
+
- et
|
37 |
+
- eu
|
38 |
+
- ee
|
39 |
+
- fo
|
40 |
+
- fa
|
41 |
+
- fj
|
42 |
+
- fi
|
43 |
+
- fr
|
44 |
+
- fy
|
45 |
+
- ff
|
46 |
+
- ga
|
47 |
+
- gl
|
48 |
+
- gn
|
49 |
+
- gu
|
50 |
+
- zh
|
51 |
+
- ht
|
52 |
+
- ha
|
53 |
+
- he
|
54 |
+
- hi
|
55 |
+
- sh
|
56 |
+
- hu
|
57 |
+
- hy
|
58 |
+
- ig
|
59 |
+
- ia
|
60 |
+
- ms
|
61 |
+
- is
|
62 |
+
- it
|
63 |
+
- jv
|
64 |
+
- ja
|
65 |
+
- kn
|
66 |
+
- ka
|
67 |
+
- kk
|
68 |
+
- kr
|
69 |
+
- km
|
70 |
+
- ki
|
71 |
+
- rw
|
72 |
+
- ky
|
73 |
+
- ko
|
74 |
+
- kv
|
75 |
+
- lo
|
76 |
+
- la
|
77 |
+
- lv
|
78 |
+
- ln
|
79 |
+
- lt
|
80 |
+
- lb
|
81 |
+
- lg
|
82 |
+
- mh
|
83 |
+
- ml
|
84 |
+
- mr
|
85 |
+
- ms
|
86 |
+
- mk
|
87 |
+
- mg
|
88 |
+
- mt
|
89 |
+
- mn
|
90 |
+
- mi
|
91 |
+
- my
|
92 |
+
- zh
|
93 |
+
- nl
|
94 |
+
- 'no'
|
95 |
+
- 'no'
|
96 |
+
- ne
|
97 |
+
- ny
|
98 |
+
- oc
|
99 |
+
- om
|
100 |
+
- or
|
101 |
+
- os
|
102 |
+
- pa
|
103 |
+
- pl
|
104 |
+
- pt
|
105 |
+
- ms
|
106 |
+
- ps
|
107 |
+
- qu
|
108 |
+
- qu
|
109 |
+
- qu
|
110 |
+
- qu
|
111 |
+
- qu
|
112 |
+
- qu
|
113 |
+
- qu
|
114 |
+
- qu
|
115 |
+
- qu
|
116 |
+
- qu
|
117 |
+
- qu
|
118 |
+
- qu
|
119 |
+
- qu
|
120 |
+
- qu
|
121 |
+
- qu
|
122 |
+
- qu
|
123 |
+
- qu
|
124 |
+
- qu
|
125 |
+
- qu
|
126 |
+
- qu
|
127 |
+
- qu
|
128 |
+
- qu
|
129 |
+
- ro
|
130 |
+
- rn
|
131 |
+
- ru
|
132 |
+
- sg
|
133 |
+
- sk
|
134 |
+
- sl
|
135 |
+
- sm
|
136 |
+
- sn
|
137 |
+
- sd
|
138 |
+
- so
|
139 |
+
- es
|
140 |
+
- sq
|
141 |
+
- su
|
142 |
+
- sv
|
143 |
+
- sw
|
144 |
+
- ta
|
145 |
+
- tt
|
146 |
+
- te
|
147 |
+
- tg
|
148 |
+
- tl
|
149 |
+
- th
|
150 |
+
- ti
|
151 |
+
- ts
|
152 |
+
- tr
|
153 |
+
- uk
|
154 |
+
- ms
|
155 |
+
- vi
|
156 |
+
- wo
|
157 |
+
- xh
|
158 |
+
- ms
|
159 |
+
- yo
|
160 |
+
- ms
|
161 |
+
- zu
|
162 |
+
- za
|
163 |
+
license: cc-by-nc-4.0
|
164 |
+
datasets:
|
165 |
+
- google/fleurs
|
166 |
+
metrics:
|
167 |
+
- acc
|
168 |
+
---
|
169 |
+
|
170 |
+
# Massively Multilingual Speech (MMS) - Finetuned LID
|
171 |
+
|
172 |
+
This checkpoint is a model fine-tuned for speech language identification (LID) and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
|
173 |
+
This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and classifies raw audio input to a probability distribution over 256 output classes (each class representing a language).
|
174 |
+
The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 256 languages.
|
175 |
+
|
176 |
+
## Table Of Content
|
177 |
+
|
178 |
+
- [Example](#example)
|
179 |
+
- [Supported Languages](#supported-languages)
|
180 |
+
- [Model details](#model-details)
|
181 |
+
- [Additional links](#additional-links)
|
182 |
+
|
183 |
+
## Example
|
184 |
+
|
185 |
+
This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to identify
|
186 |
+
the spoken language of an audio. It can recognize the [following 256 languages](#supported-languages).
|
187 |
+
|
188 |
+
Let's look at a simple example.
|
189 |
+
|
190 |
+
First, we install transformers and some other libraries
|
191 |
+
```
|
192 |
+
pip install torch accelerate torchaudio datasets
|
193 |
+
pip install --upgrade transformers
|
194 |
+
````
|
195 |
+
|
196 |
+
**Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
|
197 |
+
is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
|
198 |
+
source:
|
199 |
+
```
|
200 |
+
pip install git+https://github.com/huggingface/transformers.git
|
201 |
+
```
|
202 |
+
|
203 |
+
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
|
204 |
+
|
205 |
+
```py
|
206 |
+
from datasets import load_dataset, Audio
|
207 |
+
|
208 |
+
# English
|
209 |
+
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
|
210 |
+
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
|
211 |
+
en_sample = next(iter(stream_data))["audio"]["array"]
|
212 |
+
|
213 |
+
# Arabic
|
214 |
+
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True)
|
215 |
+
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
|
216 |
+
ar_sample = next(iter(stream_data))["audio"]["array"]
|
217 |
+
```
|
218 |
+
|
219 |
+
Next, we load the model and processor
|
220 |
+
|
221 |
+
```py
|
222 |
+
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
|
223 |
+
import torch
|
224 |
+
|
225 |
+
model_id = "facebook/mms-lid-256"
|
226 |
+
|
227 |
+
processor = AutoFeatureExtractor.from_pretrained(model_id)
|
228 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
|
229 |
+
```
|
230 |
+
|
231 |
+
Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition)
|
232 |
+
|
233 |
+
```py
|
234 |
+
# English
|
235 |
+
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
|
236 |
+
|
237 |
+
with torch.no_grad():
|
238 |
+
outputs = model(**inputs).logits
|
239 |
+
|
240 |
+
lang_id = torch.argmax(outputs, dim=-1)[0].item()
|
241 |
+
detected_lang = model.config.id2label[lang_id]
|
242 |
+
# 'eng'
|
243 |
+
|
244 |
+
# Arabic
|
245 |
+
inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt")
|
246 |
+
|
247 |
+
with torch.no_grad():
|
248 |
+
outputs = model(**inputs).logits
|
249 |
+
|
250 |
+
lang_id = torch.argmax(outputs, dim=-1)[0].item()
|
251 |
+
detected_lang = model.config.id2label[lang_id]
|
252 |
+
# 'ara'
|
253 |
+
```
|
254 |
+
|
255 |
+
To see all the supported languages of a checkpoint, you can print out the language ids as follows:
|
256 |
+
```py
|
257 |
+
processor.id2label.values()
|
258 |
+
```
|
259 |
+
|
260 |
+
For more details, about the architecture please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
|
261 |
+
|
262 |
+
## Supported Languages
|
263 |
+
|
264 |
+
This model supports 256 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
|
265 |
+
You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
|
266 |
+
<details>
|
267 |
+
<summary>Click to toggle</summary>
|
268 |
+
|
269 |
+
- ara
|
270 |
+
- cmn
|
271 |
+
- eng
|
272 |
+
- spa
|
273 |
+
- fra
|
274 |
+
- mlg
|
275 |
+
- swe
|
276 |
+
- por
|
277 |
+
- vie
|
278 |
+
- ful
|
279 |
+
- sun
|
280 |
+
- asm
|
281 |
+
- ben
|
282 |
+
- zlm
|
283 |
+
- kor
|
284 |
+
- ind
|
285 |
+
- hin
|
286 |
+
- tuk
|
287 |
+
- urd
|
288 |
+
- aze
|
289 |
+
- slv
|
290 |
+
- mon
|
291 |
+
- hau
|
292 |
+
- tel
|
293 |
+
- swh
|
294 |
+
- bod
|
295 |
+
- rus
|
296 |
+
- tur
|
297 |
+
- heb
|
298 |
+
- mar
|
299 |
+
- som
|
300 |
+
- tgl
|
301 |
+
- tat
|
302 |
+
- tha
|
303 |
+
- cat
|
304 |
+
- ron
|
305 |
+
- mal
|
306 |
+
- bel
|
307 |
+
- pol
|
308 |
+
- yor
|
309 |
+
- nld
|
310 |
+
- bul
|
311 |
+
- hat
|
312 |
+
- afr
|
313 |
+
- isl
|
314 |
+
- amh
|
315 |
+
- tam
|
316 |
+
- hun
|
317 |
+
- hrv
|
318 |
+
- lit
|
319 |
+
- cym
|
320 |
+
- fas
|
321 |
+
- mkd
|
322 |
+
- ell
|
323 |
+
- bos
|
324 |
+
- deu
|
325 |
+
- sqi
|
326 |
+
- jav
|
327 |
+
- kmr
|
328 |
+
- nob
|
329 |
+
- uzb
|
330 |
+
- snd
|
331 |
+
- lat
|
332 |
+
- nya
|
333 |
+
- grn
|
334 |
+
- mya
|
335 |
+
- orm
|
336 |
+
- lin
|
337 |
+
- hye
|
338 |
+
- yue
|
339 |
+
- pan
|
340 |
+
- jpn
|
341 |
+
- kaz
|
342 |
+
- npi
|
343 |
+
- kik
|
344 |
+
- kat
|
345 |
+
- guj
|
346 |
+
- kan
|
347 |
+
- tgk
|
348 |
+
- ukr
|
349 |
+
- ces
|
350 |
+
- lav
|
351 |
+
- bak
|
352 |
+
- khm
|
353 |
+
- fao
|
354 |
+
- glg
|
355 |
+
- ltz
|
356 |
+
- xog
|
357 |
+
- lao
|
358 |
+
- mlt
|
359 |
+
- sin
|
360 |
+
- aka
|
361 |
+
- sna
|
362 |
+
- ita
|
363 |
+
- srp
|
364 |
+
- mri
|
365 |
+
- nno
|
366 |
+
- pus
|
367 |
+
- eus
|
368 |
+
- ory
|
369 |
+
- lug
|
370 |
+
- bre
|
371 |
+
- luo
|
372 |
+
- slk
|
373 |
+
- ewe
|
374 |
+
- fin
|
375 |
+
- rif
|
376 |
+
- dan
|
377 |
+
- yid
|
378 |
+
- yao
|
379 |
+
- mos
|
380 |
+
- hne
|
381 |
+
- est
|
382 |
+
- dyu
|
383 |
+
- bam
|
384 |
+
- uig
|
385 |
+
- sck
|
386 |
+
- tso
|
387 |
+
- mup
|
388 |
+
- ctg
|
389 |
+
- ceb
|
390 |
+
- war
|
391 |
+
- bbc
|
392 |
+
- vmw
|
393 |
+
- sid
|
394 |
+
- tpi
|
395 |
+
- mag
|
396 |
+
- san
|
397 |
+
- kri
|
398 |
+
- lon
|
399 |
+
- kir
|
400 |
+
- run
|
401 |
+
- ubl
|
402 |
+
- kin
|
403 |
+
- rkt
|
404 |
+
- xmm
|
405 |
+
- tir
|
406 |
+
- mai
|
407 |
+
- nan
|
408 |
+
- nyn
|
409 |
+
- bcc
|
410 |
+
- hak
|
411 |
+
- suk
|
412 |
+
- bem
|
413 |
+
- rmy
|
414 |
+
- awa
|
415 |
+
- pcm
|
416 |
+
- bgc
|
417 |
+
- shn
|
418 |
+
- oci
|
419 |
+
- wol
|
420 |
+
- bci
|
421 |
+
- kab
|
422 |
+
- ilo
|
423 |
+
- bcl
|
424 |
+
- haw
|
425 |
+
- mad
|
426 |
+
- nod
|
427 |
+
- sag
|
428 |
+
- sas
|
429 |
+
- jam
|
430 |
+
- mey
|
431 |
+
- shi
|
432 |
+
- hil
|
433 |
+
- ace
|
434 |
+
- kam
|
435 |
+
- min
|
436 |
+
- umb
|
437 |
+
- hno
|
438 |
+
- ban
|
439 |
+
- syl
|
440 |
+
- bxg
|
441 |
+
- xho
|
442 |
+
- mww
|
443 |
+
- epo
|
444 |
+
- tzm
|
445 |
+
- zul
|
446 |
+
- ibo
|
447 |
+
- abk
|
448 |
+
- guz
|
449 |
+
- ckb
|
450 |
+
- knc
|
451 |
+
- nso
|
452 |
+
- bho
|
453 |
+
- dje
|
454 |
+
- tiv
|
455 |
+
- gle
|
456 |
+
- lua
|
457 |
+
- skr
|
458 |
+
- bto
|
459 |
+
- kea
|
460 |
+
- glk
|
461 |
+
- ast
|
462 |
+
- sat
|
463 |
+
- ktu
|
464 |
+
- bhb
|
465 |
+
- emk
|
466 |
+
- kng
|
467 |
+
- kmb
|
468 |
+
- tsn
|
469 |
+
- gom
|
470 |
+
- ven
|
471 |
+
- sco
|
472 |
+
- glv
|
473 |
+
- sot
|
474 |
+
- sou
|
475 |
+
- gno
|
476 |
+
- nde
|
477 |
+
- bjn
|
478 |
+
- ina
|
479 |
+
- fmu
|
480 |
+
- esg
|
481 |
+
- wes
|
482 |
+
- pnb
|
483 |
+
- phr
|
484 |
+
- mui
|
485 |
+
- bug
|
486 |
+
- mrr
|
487 |
+
- kas
|
488 |
+
- lir
|
489 |
+
- vah
|
490 |
+
- ssw
|
491 |
+
- rwr
|
492 |
+
- pcc
|
493 |
+
- hms
|
494 |
+
- wbr
|
495 |
+
- swv
|
496 |
+
- mtr
|
497 |
+
- haz
|
498 |
+
- aii
|
499 |
+
- bns
|
500 |
+
- msi
|
501 |
+
- wuu
|
502 |
+
- hsn
|
503 |
+
- bgp
|
504 |
+
- tts
|
505 |
+
- lmn
|
506 |
+
- dcc
|
507 |
+
- bew
|
508 |
+
- bjj
|
509 |
+
- ibb
|
510 |
+
- tji
|
511 |
+
- hoj
|
512 |
+
- cpx
|
513 |
+
- cdo
|
514 |
+
- daq
|
515 |
+
- mut
|
516 |
+
- nap
|
517 |
+
- czh
|
518 |
+
- gdx
|
519 |
+
- sdh
|
520 |
+
- scn
|
521 |
+
- mnp
|
522 |
+
- bar
|
523 |
+
- mzn
|
524 |
+
- gsw
|
525 |
+
|
526 |
+
</details>
|
527 |
+
|
528 |
+
## Model details
|
529 |
+
|
530 |
+
- **Developed by:** Vineel Pratap et al.
|
531 |
+
- **Model type:** Multi-Lingual Automatic Speech Recognition model
|
532 |
+
- **Language(s):** 256 languages, see [supported languages](#supported-languages)
|
533 |
+
- **License:** CC-BY-NC 4.0 license
|
534 |
+
- **Num parameters**: 1 billion
|
535 |
+
- **Audio sampling rate**: 16,000 kHz
|
536 |
+
- **Cite as:**
|
537 |
+
|
538 |
+
@article{pratap2023mms,
|
539 |
+
title={Scaling Speech Technology to 1,000+ Languages},
|
540 |
+
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
|
541 |
+
journal={arXiv},
|
542 |
+
year={2023}
|
543 |
+
}
|
544 |
+
|
545 |
+
## Additional Links
|
546 |
+
|
547 |
+
- [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
|
548 |
+
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
|
549 |
+
- [Paper](https://arxiv.org/abs/2305.13516)
|
550 |
+
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
|
551 |
+
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
|
552 |
+
- MMS base checkpoints:
|
553 |
+
- [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
|
554 |
+
- [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
|
555 |
+
- [Official Space](https://huggingface.co/spaces/facebook/MMS)
|
langs.txt
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- ara
|
2 |
+
- cmn
|
3 |
+
- eng
|
4 |
+
- spa
|
5 |
+
- fra
|
6 |
+
- mlg
|
7 |
+
- swe
|
8 |
+
- por
|
9 |
+
- vie
|
10 |
+
- ful
|
11 |
+
- sun
|
12 |
+
- asm
|
13 |
+
- ben
|
14 |
+
- zlm
|
15 |
+
- kor
|
16 |
+
- ind
|
17 |
+
- hin
|
18 |
+
- tuk
|
19 |
+
- urd
|
20 |
+
- aze
|
21 |
+
- slv
|
22 |
+
- mon
|
23 |
+
- hau
|
24 |
+
- tel
|
25 |
+
- swh
|
26 |
+
- bod
|
27 |
+
- rus
|
28 |
+
- tur
|
29 |
+
- heb
|
30 |
+
- mar
|
31 |
+
- som
|
32 |
+
- tgl
|
33 |
+
- tat
|
34 |
+
- tha
|
35 |
+
- cat
|
36 |
+
- ron
|
37 |
+
- mal
|
38 |
+
- bel
|
39 |
+
- pol
|
40 |
+
- yor
|
41 |
+
- nld
|
42 |
+
- bul
|
43 |
+
- hat
|
44 |
+
- afr
|
45 |
+
- isl
|
46 |
+
- amh
|
47 |
+
- tam
|
48 |
+
- hun
|
49 |
+
- hrv
|
50 |
+
- lit
|
51 |
+
- cym
|
52 |
+
- fas
|
53 |
+
- mkd
|
54 |
+
- ell
|
55 |
+
- bos
|
56 |
+
- deu
|
57 |
+
- sqi
|
58 |
+
- jav
|
59 |
+
- kmr
|
60 |
+
- nob
|
61 |
+
- uzb
|
62 |
+
- snd
|
63 |
+
- lat
|
64 |
+
- nya
|
65 |
+
- grn
|
66 |
+
- mya
|
67 |
+
- orm
|
68 |
+
- lin
|
69 |
+
- hye
|
70 |
+
- yue
|
71 |
+
- pan
|
72 |
+
- jpn
|
73 |
+
- kaz
|
74 |
+
- npi
|
75 |
+
- kik
|
76 |
+
- kat
|
77 |
+
- guj
|
78 |
+
- kan
|
79 |
+
- tgk
|
80 |
+
- ukr
|
81 |
+
- ces
|
82 |
+
- lav
|
83 |
+
- bak
|
84 |
+
- khm
|
85 |
+
- fao
|
86 |
+
- glg
|
87 |
+
- ltz
|
88 |
+
- xog
|
89 |
+
- lao
|
90 |
+
- mlt
|
91 |
+
- sin
|
92 |
+
- aka
|
93 |
+
- sna
|
94 |
+
- ita
|
95 |
+
- srp
|
96 |
+
- mri
|
97 |
+
- nno
|
98 |
+
- pus
|
99 |
+
- eus
|
100 |
+
- ory
|
101 |
+
- lug
|
102 |
+
- bre
|
103 |
+
- luo
|
104 |
+
- slk
|
105 |
+
- ewe
|
106 |
+
- fin
|
107 |
+
- rif
|
108 |
+
- dan
|
109 |
+
- yid
|
110 |
+
- yao
|
111 |
+
- mos
|
112 |
+
- hne
|
113 |
+
- est
|
114 |
+
- dyu
|
115 |
+
- bam
|
116 |
+
- uig
|
117 |
+
- sck
|
118 |
+
- tso
|
119 |
+
- mup
|
120 |
+
- ctg
|
121 |
+
- ceb
|
122 |
+
- war
|
123 |
+
- bbc
|
124 |
+
- vmw
|
125 |
+
- sid
|
126 |
+
- tpi
|
127 |
+
- mag
|
128 |
+
- san
|
129 |
+
- kri
|
130 |
+
- lon
|
131 |
+
- kir
|
132 |
+
- run
|
133 |
+
- ubl
|
134 |
+
- kin
|
135 |
+
- rkt
|
136 |
+
- xmm
|
137 |
+
- tir
|
138 |
+
- mai
|
139 |
+
- nan
|
140 |
+
- nyn
|
141 |
+
- bcc
|
142 |
+
- hak
|
143 |
+
- suk
|
144 |
+
- bem
|
145 |
+
- rmy
|
146 |
+
- awa
|
147 |
+
- pcm
|
148 |
+
- bgc
|
149 |
+
- shn
|
150 |
+
- oci
|
151 |
+
- wol
|
152 |
+
- bci
|
153 |
+
- kab
|
154 |
+
- ilo
|
155 |
+
- bcl
|
156 |
+
- haw
|
157 |
+
- mad
|
158 |
+
- nod
|
159 |
+
- sag
|
160 |
+
- sas
|
161 |
+
- jam
|
162 |
+
- mey
|
163 |
+
- shi
|
164 |
+
- hil
|
165 |
+
- ace
|
166 |
+
- kam
|
167 |
+
- min
|
168 |
+
- umb
|
169 |
+
- hno
|
170 |
+
- ban
|
171 |
+
- syl
|
172 |
+
- bxg
|
173 |
+
- xho
|
174 |
+
- mww
|
175 |
+
- epo
|
176 |
+
- tzm
|
177 |
+
- zul
|
178 |
+
- ibo
|
179 |
+
- abk
|
180 |
+
- guz
|
181 |
+
- ckb
|
182 |
+
- knc
|
183 |
+
- nso
|
184 |
+
- bho
|
185 |
+
- dje
|
186 |
+
- tiv
|
187 |
+
- gle
|
188 |
+
- lua
|
189 |
+
- skr
|
190 |
+
- bto
|
191 |
+
- kea
|
192 |
+
- glk
|
193 |
+
- ast
|
194 |
+
- sat
|
195 |
+
- ktu
|
196 |
+
- bhb
|
197 |
+
- emk
|
198 |
+
- kng
|
199 |
+
- kmb
|
200 |
+
- tsn
|
201 |
+
- gom
|
202 |
+
- ven
|
203 |
+
- sco
|
204 |
+
- glv
|
205 |
+
- sot
|
206 |
+
- sou
|
207 |
+
- gno
|
208 |
+
- nde
|
209 |
+
- bjn
|
210 |
+
- ina
|
211 |
+
- fmu
|
212 |
+
- esg
|
213 |
+
- wes
|
214 |
+
- pnb
|
215 |
+
- phr
|
216 |
+
- mui
|
217 |
+
- bug
|
218 |
+
- mrr
|
219 |
+
- kas
|
220 |
+
- lir
|
221 |
+
- vah
|
222 |
+
- ssw
|
223 |
+
- rwr
|
224 |
+
- pcc
|
225 |
+
- hms
|
226 |
+
- wbr
|
227 |
+
- swv
|
228 |
+
- mtr
|
229 |
+
- haz
|
230 |
+
- aii
|
231 |
+
- bns
|
232 |
+
- msi
|
233 |
+
- wuu
|
234 |
+
- hsn
|
235 |
+
- bgp
|
236 |
+
- tts
|
237 |
+
- lmn
|
238 |
+
- dcc
|
239 |
+
- bew
|
240 |
+
- bjj
|
241 |
+
- ibb
|
242 |
+
- tji
|
243 |
+
- hoj
|
244 |
+
- cpx
|
245 |
+
- cdo
|
246 |
+
- daq
|
247 |
+
- mut
|
248 |
+
- nap
|
249 |
+
- czh
|
250 |
+
- gdx
|
251 |
+
- sdh
|
252 |
+
- scn
|
253 |
+
- mnp
|
254 |
+
- bar
|
255 |
+
- mzn
|
256 |
+
- gsw
|