Update README.md
Browse files
README.md
CHANGED
@@ -53,6 +53,99 @@ The models are made available under a non-commercial CC BY-NC 4.0 license. More
|
|
53 |
|
54 |
The GALACTICA models are trained on 106 billion tokens of open-access scientific text and data. This includes papers, textbooks, scientific websites, encyclopedias, reference material, knowledge bases, and more. We tokenize different modalities to provide a natural langauge interface for different tasks. See the README.md for more information. See the paper for full information on the training data.
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
## Performance and Limitations
|
57 |
|
58 |
The model outperforms several existing language models on a range of knowledge probes, reasoning, and knowledge-intensive scientific tasks. This also extends to general NLP tasks, where GALACTICA outperforms other open source general language models. That being said, we note a number of limitations in this section.
|
|
|
53 |
|
54 |
The GALACTICA models are trained on 106 billion tokens of open-access scientific text and data. This includes papers, textbooks, scientific websites, encyclopedias, reference material, knowledge bases, and more. We tokenize different modalities to provide a natural langauge interface for different tasks. See the README.md for more information. See the paper for full information on the training data.
|
55 |
|
56 |
+
## How to use
|
57 |
+
|
58 |
+
Find below some example scripts on how to use the model in `transformers`:
|
59 |
+
|
60 |
+
## Using the Pytorch model
|
61 |
+
|
62 |
+
### Running the model on a CPU
|
63 |
+
|
64 |
+
<details>
|
65 |
+
<summary> Click to expand </summary>
|
66 |
+
|
67 |
+
```python
|
68 |
+
|
69 |
+
from transformers import AutoTokenizer, OPTForCausalLM
|
70 |
+
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m")
|
72 |
+
model = OPTForCausalLM.from_pretrained("facebook/galactica-125m")
|
73 |
+
|
74 |
+
input_text = "The Transformer architecture [START_REF]"
|
75 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
76 |
+
|
77 |
+
outputs = model.generate(input_ids)
|
78 |
+
print(tokenizer.decode(outputs[0]))
|
79 |
+
```
|
80 |
+
|
81 |
+
</details>
|
82 |
+
|
83 |
+
### Running the model on a GPU
|
84 |
+
|
85 |
+
<details>
|
86 |
+
<summary> Click to expand </summary>
|
87 |
+
|
88 |
+
```python
|
89 |
+
# pip install accelerate
|
90 |
+
from transformers import AutoTokenizer, OPTForCausalLM
|
91 |
+
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m")
|
93 |
+
OPTForCausalLM.from_pretrained("facebook/galactica-125m", device_map="auto")
|
94 |
+
|
95 |
+
input_text = "The Transformer architecture [START_REF]"
|
96 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
97 |
+
|
98 |
+
outputs = model.generate(input_ids)
|
99 |
+
print(tokenizer.decode(outputs[0]))
|
100 |
+
```
|
101 |
+
|
102 |
+
</details>
|
103 |
+
|
104 |
+
### Running the model on a GPU using different precisions
|
105 |
+
|
106 |
+
#### FP16
|
107 |
+
|
108 |
+
<details>
|
109 |
+
<summary> Click to expand </summary>
|
110 |
+
|
111 |
+
```python
|
112 |
+
# pip install accelerate
|
113 |
+
import torch
|
114 |
+
from transformers import AutoTokenizer, OPTForCausalLM
|
115 |
+
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m")
|
117 |
+
model = OPTForCausalLM.from_pretrained("facebook/galactica-125m", device_map="auto", torch_dtype=torch.float16)
|
118 |
+
|
119 |
+
input_text = "The Transformer architecture [START_REF]"
|
120 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
121 |
+
|
122 |
+
outputs = model.generate(input_ids)
|
123 |
+
print(tokenizer.decode(outputs[0]))
|
124 |
+
```
|
125 |
+
|
126 |
+
</details>
|
127 |
+
|
128 |
+
#### INT8
|
129 |
+
|
130 |
+
<details>
|
131 |
+
<summary> Click to expand </summary>
|
132 |
+
|
133 |
+
```python
|
134 |
+
# pip install bitsandbytes accelerate
|
135 |
+
from transformers import AutoTokenizer, OPTForCausalLM
|
136 |
+
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-125m")
|
138 |
+
model = OPTForCausalLM.from_pretrained("facebook/galactica-125m", device_map="auto", load_in_8bit=True)
|
139 |
+
|
140 |
+
input_text = "The Transformer architecture [START_REF]"
|
141 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
142 |
+
|
143 |
+
outputs = model.generate(input_ids)
|
144 |
+
print(tokenizer.decode(outputs[0]))
|
145 |
+
```
|
146 |
+
|
147 |
+
</details>
|
148 |
+
|
149 |
## Performance and Limitations
|
150 |
|
151 |
The model outperforms several existing language models on a range of knowledge probes, reasoning, and knowledge-intensive scientific tasks. This also extends to general NLP tasks, where GALACTICA outperforms other open source general language models. That being said, we note a number of limitations in this section.
|