File size: 2,617 Bytes
b9bdfd9
13812cf
 
 
b9bdfd9
13812cf
6811f45
 
b1cf099
 
 
6811f45
b1cf099
 
 
 
 
 
13812cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6811f45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
tags:
- feature-extraction
pipeline_tag: feature-extraction
---
DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).

<p align="center">
<img src="https://raw.githubusercontent.com/facebookresearch/dpr-scale/main/dragon/images/teaser.png" width="600">
</p>

The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/main/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders. The following models are also available:

Model | Initialization | MARCO Dev | BEIR | Query Encoder Path | Context Encoder Path
|---|---|---|---|---|---
DRAGON+ | Shitao/RetroMAE| 39.0 | 47.4 | [facebook/dragon-plus-query-encoder](https://huggingface.co/facebook/dragon-plus-query-encoder) | [facebook/dragon-plus-context-encoder](https://huggingface.co/facebook/dragon-plus-context-encoder)
DRAGON-RoBERTa | RoBERTa-base | 39.4 | 47.2 | [facebook/dragon-roberta-query-encoder](https://huggingface.co/facebook/dragon-roberta-query-encoder) | [facebook/dragon-roberta-context-encoder](https://huggingface.co/facebook/dragon-roberta-context-encoder)

## Usage (HuggingFace Transformers)
Using the model directly available in HuggingFace transformers .

```python
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('facebook/dragon-plus-query-encoder')
query_encoder = AutoModel.from_pretrained('facebook/dragon-plus-query-encoder')
context_encoder = AutoModel.from_pretrained('facebook/dragon-plus-context-encoder')

# We use msmarco query and passages as an example
query =  "Where was Marie Curie born?"
contexts = [
    "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.",
    "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace."
]
# Apply tokenizer
query_input = tokenizer(query, return_tensors='pt')
ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt')
# Compute embeddings: take the last-layer hidden state of the [CLS] token
query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :]
ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
# Compute similarity scores using dot product
score1 = query_emb @ ctx_emb[0]  # 396.5625
score2 = query_emb @ ctx_emb[1]  # 393.8340
```