File size: 7,406 Bytes
fb8254d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: cc-by-nc-4.0
library_name: transformers
---
# Model Details
MobileLLM is introduced: "[MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases](https://arxiv.org/abs/2402.14905)", published in ICML 2024.
**Model Developer**: Meta
**Model Architecture**: MobileLLM is an auto-regressive language model leveraging an optimized transformer architecture, specifically engineered for on-device applications with constrained resources.
MobileLLM integrated several key techniques including: (1) SwiGLU activation function, (2) deep and thin architectures, (3) embedding sharing, (4) grouped-query attention. MobileLLM-125M/350M attains a remarkable 2.7%/4.3% accuracy boost over preceding 125M/350M SoTA models on zero-shot commonsense reasoning tasks. In our updated version, we further demonstrate that our design philosophy scales effectively to larger models, with SoTA results for MobileLLM-600M/1B/1.5B.
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/660f893bae89429c07a32cdb/ahtsJXC5vBVIdmsMQDNHv.jpeg)
| | # Layers | # Attnetion Heads | # KV Heads | Token Dimension | Params |
| --- | --- | --- | --- | --- | --- |
| MobileLLM-125M | 30 | 9 | 3 | 576 | 124.6M |
| MobileLLM-350M | 32 | 15 | 5 | 960 | 345.3M |
| MobileLLM-600M | 40 | 18 | 6 | 1152 | 603.1M |
| MobileLLM-1B | 54 | 20 | 5 | 1280 | 1.01B |
| MobileLLM-1.5B | 54 | 25 | 5 | 1600 | 1.51B |
| | Training Data | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count |
| --- | --- | --- | --- | --- | --- | --- | --- |
| MobileLLM-125M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
| MobileLLM-350M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
| MobileLLM-600M | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
| MobileLLM-1B | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
| MobileLLM-1.5B | Publicly available online data. | Text | Text | 2k | Yes | Yes | 1T tokens |
# How to use
We are providing 2 ways to run the model:
[HuggingFace](#huggingface)
[MobileLLM codebase](#mobilellm-codebase)
## HuggingFace
To load the pretrained model for further finetuning or evaluation:
```bash
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/MobileLLM-350M-layer-share", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("facebook/MobileLLM-350M-layer-share", trust_remote_code=True)
```
Note that the default tokenizer does not contain special tokens. For example you can use:
```bash
tokenizer.add_special_tokens(
{
"eos_token": "</s>",
"bos_token": "<s>",
"unk_token": "<unk>",
}
)
```
## MobileLLM codebase
We provide the pretraining code in https://github.com/facebookresearch/MobileLLM
```bash
> git clone https://github.com/facebookresearch/MobileLLM
> pip install -r requirement.txt
# data pre-process and specify the data path in pretrain.sh
# run pretraining
> bash pretrain.sh
```
We also provide evaluation script for calculating ppl of wikitext-2 test split:
```bash
> bash eval.sh
```
You can find more details in the GitHub repo.
# Training cost
It takes the following number of days to train MobileLLM on 1T tokens using 32 NVIDIA A100 80G GPUs.
| 125M | 350M | 600M | 1B | 1.5B |
| --- | --- | --- | --- | --- |
| ~3 days| ~6 days| ~8 days | ~12 days | ~18 days |
# Evaluation
We evaluate the pretrained MobileLLM models on Zero-shot Common Sense Reasoning tasks
## MobileLLM-125M
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| OPT-125M | 41.3 | 25.2 | 57.5 | 62.0 | 41.9 | 31.1 | 31.2 | 50.8 | 42.6 |
| GPT-neo-125M | 40.7 | 24.8 | 61.3 | 62.5 | 41.9 | 29.7 | 31.6 | 50.7 | 42.9 |
| Pythia-160M | 40.0 | 25.3 | 59.5 | 62.0 | 41.5 | 29.9 | 31.2 | 50.9 | 42.5 |
| **MobileLLM-125M** | 43.9 | 27.1 | 60.2 | 65.3 | 42.4 | 38.9 | 39.5 | 53.1 | **46.3** |
| **MobileLLM-LS-125M** | 45.8 | 28.7 | 60.4 | 65.7 | 42.9 | 39.5 | 41.1 | 52.1 | **47.0** |
## MobileLLM-350M
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| OPT-350M | 41.9 | 25.7 | 54.0 | 64.8 | 42.6 | 36.2 | 33.3 | 52.4 | 43.9 |
| Pythia-410M | 47.1 | 30.3 | 55.3 | 67.2 | 43.1 | 40.1 | 36.2 | 53.4 | 46.6 |
| **MobileLLM-350M** | 53.8 | 33.5 | 62.4 | 68.6 | 44.7 | 49.6 | 40.0 | 57.6 | **51.3** |
| **MobileLLM-LS-350M** | 54.4 | 32.5 | 62.8 | 69.8 | 44.1 | 50.6 | 45.8 | 57.2 | **52.1** |
## MobileLLM-600M
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Qwen1.5-500M | 54.7 | 32.1 | 46.9 | 68.9 | 46.0 | 48.8 | 37.7 | 55.0 | 48.8 |
| BLOOM-560M | 43.7 | 27.5 | 53.7 | 65.1 | 42.5 | 36.5 | 32.6 | 52.2 | 44.2 |
| MobiLlama-800M | 52.0 | 31.7 | 54.6 | 73.0 | 43.3 | 52.3 | 42.5 | 56.3 | 50.7 |
| **MobileLLM-600M** | 58.1 | 35.8 | 61.0 | 72.3 | 44.9 | 55.9 | 47.9 | 58.6 | **54.3** |
## MobileLLM-1B
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Pythia-1B | 49.9 | 30.4 | 58.7 | 69.2 | 43.3 | 47.4 | 38.6 | 52.2 | 48.7 |
| MobiLlama-1B | 59.7 | 38.4 | 59.2 | 74.5 | 44.9 | 62.0 | 43.7 | 59.0 | 55.2 |
| Falcon-1B | 59.5 | 38.4 | 63.9 | 74.6 | 44.6 | 62.9 | 45.6 | 60.9 | 56.3 |
| BLOOM-1.1B | 47.6 | 27.3 | 58.6 | 67.0 | 42.4 | 42.2 | 36.6 | 53.8 | 46.9 |
| TinyLlama-1.1B | 59.2 | 37.1 | 58.1 | 72.9 | 43.9 | 59.1 | 44.7 | 58.8 | 54.2 |
| **MobileLLM-1B** | 63.0 | 39.0 | 66.7 | 74.4 | 45.0 | 61.4 | 46.8 | 62.3 | **57.3** |
## MobileLLM-1.5B
| model | boolq | piqa | siqa | hellaswag | winogrande | arc_easy | arc_challenge | obqa | avg. |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| GPT-neo-1.3B | 51.3 | 33.0 | 61.8 | 70.9 | 43.7 | 48.6 | 41.2 | 54.5 | 50.6 |
| OPT-1.3B | 54.4 | 31.7 | 58.4 | 71.5 | 44.7 | 53.7 | 44.6 | 59.1 | 52.3 |
| BLOOM-1.7B | 50.9 | 31.2 | 61.7 | 70.0 | 43.2 | 47.2 | 36.2 | 56.1 | 49.6 |
| Qwen1.5-1.8B | 61.1 | 36.5 | 68.3 | 74.1 | 47.2 | 60.4 | 42.9 | 61.2 | 56.5 |
| GPT-neo-2.7B | 55.8 | 34.3 | 62.4 | 72.9 | 43.6 | 55.6 | 40.0 | 57.9 | 52.8 |
| OPT-2.7B | 56.6 | 34.6 | 61.8 | 74.5 | 45.6 | 60.2 | 48.2 | 59.6 | 55.1 |
| Pythia-2.8B | 59.4 | 38.9 | 66.1 | 73.8 | 44.5 | 59.6 | 45.0 | 59.4 | 55.8 |
| BLOOM-3B | 55.1 | 33.6 | 62.1 | 70.5 | 43.2 | 53.9 | 41.6 | 58.2 | 52.3 |
| **MobileLLM-1.5B** | 67.5 | 40.9 | 65.7 | 74.8 | 46.4 | 64.5 | 50.5 | 64.7 | **59.4** |
# Citation
If you find our code useful for your research, please consider citing:
@article{liu2024mobilellm,
title={MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases},
author={Liu, Zechun and Zhao, Changsheng and Iandola, Forrest and Lai, Chen and Tian, Yuandong and Fedorov, Igor and Xiong, Yunyang and Chang, Ernie and Shi, Yangyang and Krishnamoorthi, Raghuraman and others},
journal={arXiv preprint arXiv:2402.14905},
year={2024}
}
# License
MobileLLM is CC-BY-NC 4.0 licensed as of now. |