File size: 5,895 Bytes
878a097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
[paths]
train = "corpus/UD_French-Sequoia/train.spacy"
dev = "corpus/UD_French-Sequoia/dev.spacy"
vectors = null
init_tok2vec = null
tokenizer_source = "training/UD_French-Sequoia/tokenizer/model-best"
transformer_source = "training/UD_French-Sequoia/transformer/model-best"
[system]
gpu_allocator = "pytorch"
seed = 0
[nlp]
lang = "fr"
pipeline = ["experimental_char_ner_tokenizer","transformer","senter","tagger","morphologizer","parser","experimental_edit_tree_lemmatizer"]
batch_size = 64
disabled = ["senter"]
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy-experimental.char_pretokenizer.v1"}
[components]
[components.experimental_char_ner_tokenizer]
factory = "experimental_char_ner_tokenizer"
scorer = {"@scorers":"spacy-experimental.tokenizer_scorer.v1"}
[components.experimental_char_ner_tokenizer.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null
[components.experimental_char_ner_tokenizer.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.experimental_char_ner_tokenizer.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 128
attrs = ["ORTH","LOWER","IS_DIGIT","IS_ALPHA","IS_SPACE","IS_PUNCT"]
rows = [1000,500,50,50,50,50]
include_static_vectors = false
[components.experimental_char_ner_tokenizer.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 128
depth = 4
window_size = 4
maxout_pieces = 2
[components.experimental_edit_tree_lemmatizer]
factory = "experimental_edit_tree_lemmatizer"
backoff = "orth"
min_tree_freq = 1
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 1
[components.experimental_edit_tree_lemmatizer.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.experimental_edit_tree_lemmatizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.morphologizer]
factory = "morphologizer"
extend = false
overwrite = false
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}
[components.morphologizer.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.morphologizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 5
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 3
use_upper = false
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.senter]
factory = "senter"
overwrite = false
scorer = {"@scorers":"spacy.senter_scorer.v1"}
[components.senter.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.senter.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.tagger]
factory = "tagger"
neg_prefix = "!!!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}
[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v3"
name = "xlm-roberta-base"
mixed_precision = true
[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
[components.transformer.model.grad_scaler_config]
[components.transformer.model.tokenizer_config]
use_fast = true
[components.transformer.model.transformer_config]
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[training]
train_corpus = "corpora.train"
dev_corpus = "corpora.dev"
seed = ${system:seed}
gpu_allocator = ${system:gpu_allocator}
dropout = 0.1
accumulate_gradient = 3
patience = 5000
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
before_to_disk = null
annotating_components = []
[training.batcher]
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
get_length = null
size = 2000
buffer = 256
[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 0.00000001
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005
[training.score_weights]
token_f = 0.0
token_p = null
token_r = null
token_acc = null
sents_f = 0.05
sents_p = 0.0
sents_r = 0.0
tag_acc = 0.11
pos_acc = 0.05
morph_acc = 0.05
morph_per_feat = null
dep_uas = 0.11
dep_las = 0.11
dep_las_per_type = null
lemma_acc = 0.52
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer] |