|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the Flax library models for connectionist temporal classification (CTC) speech recognition. |
|
""" |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import numpy as np |
|
from datasets import DatasetDict, load_dataset, load_metric |
|
from tqdm import tqdm |
|
|
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import optax |
|
import transformers |
|
import wandb as wandb |
|
from flax import core, jax_utils, struct, traverse_util |
|
from flax.jax_utils import unreplicate, pad_shard_unpad |
|
from flax.training.common_utils import get_metrics, shard, shard_prng_key |
|
from huggingface_hub import Repository |
|
from models import Wav2Vec2Config, FlaxWav2Vec2ForCTC |
|
from optax._src import linear_algebra |
|
from transformers import ( |
|
AutoFeatureExtractor, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
TrainingArguments, |
|
is_tensorboard_available, |
|
) |
|
from transformers.file_utils import get_full_repo_name |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.17.0.dev0") |
|
|
|
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@flax.struct.dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " |
|
"with private models)." |
|
}, |
|
) |
|
freeze_feature_encoder: bool = field( |
|
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} |
|
) |
|
activation_dropout: float = field( |
|
default=0.1, |
|
metadata={ |
|
"help": "The hidden activation dropout probability in the embeddings, encoder, and pooler." |
|
}, |
|
) |
|
hidden_dropout: float = field( |
|
default=0.1, |
|
metadata={ |
|
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." |
|
}, |
|
) |
|
feat_proj_dropout: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "The feat proj dropout probability for feature encoder representations." |
|
}, |
|
) |
|
mask_time_prob: float = field( |
|
default=0.1, |
|
metadata={ |
|
"help": "The spec aug dropout probability for feature encoder representations." |
|
}, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
text_column: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_test_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of test examples to this " |
|
"value if set." |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, |
|
) |
|
text_column_name: str = field( |
|
default="text", |
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=20.0, |
|
metadata={ |
|
"help": "Filter audio files in the training set that are longer than `max_duration_in_seconds` seconds" |
|
}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, metadata={"help": "Filter audio files in the training set that are shorter than `min_duration_in_seconds` seconds"} |
|
) |
|
max_label_length: Optional[int] = field( |
|
default=512, |
|
metadata={ |
|
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter " |
|
"than this will be filtered." |
|
}, |
|
) |
|
min_label_length: Optional[int] = field( |
|
default=0, |
|
metadata={ |
|
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter " |
|
"than this will be filtered." |
|
}, |
|
) |
|
max_eval_duration_in_seconds: float = field( |
|
default=None, |
|
metadata={ |
|
"help": "Filter audio files in the eval/test set that are longer than `max_duration_in_seconds` seconds" |
|
}, |
|
) |
|
pad_input_to_multiple_of: Optional[int] = field( |
|
default=32000, |
|
metadata={ |
|
"help": "If set will pad the input sequence to a multiple of the provided value. " |
|
"This is important to avoid triggering recompilations on TPU." |
|
}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "If set will pad the target sequence to a multiple of the provided value. " |
|
"This is important to avoid triggering recompilations on TPU." |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to only do data preprocessing and skip training. " |
|
"This is especially useful when data preprocessing errors out in distributed training due to timeout. " |
|
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " |
|
"so that the cached datasets can consequently be loaded in distributed training" |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="flax-speech-recognition-ctc", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the wandb run."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="CTC", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
test_split_name: str = field( |
|
default="test", |
|
metadata={"help": "The name of the test data set split to use (via the datasets library). Defaults to 'test'"}, |
|
) |
|
|
|
|
|
|
|
@dataclass |
|
class FlaxTrainingArguments(TrainingArguments): |
|
precision: str = field( |
|
default="full", |
|
metadata={ |
|
"help": "Whether to enable mixed-precision training. If true, the optimizer is stored in half-precision (bfloat16) and computations are executed in half-precision" |
|
"**Note that this only specifies the dtype of the computation and optimizer state. It does not influence the dtype of model parameters.**" |
|
}, |
|
) |
|
matmul_precision: str = field( |
|
default="default", |
|
metadata={ |
|
"help": "Default floating-point precision of internal computations used in TPU matrix multiplications and convolutions. " |
|
"This configuration option controls the default precision for JAX operations that take an optional precision argument (e.g. `lax.conv_general_dilated` and `lax.dot`). " |
|
"This configuration option does not change the behaviours of such calls with explicit precision arguments; " |
|
"it only changes the behaviors of calls with no such argument provided. " |
|
"One of `['highest', 'float32', 'high', 'bfloat16_3x', 'default', 'bfloat16', 'fastest', None]`." |
|
}, |
|
) |
|
multisteps: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to use Optax MultiSteps for gradient accumulation. If `False` (default) and `gradient_accumulation_steps > 1`, " |
|
"a custom gradient accumulation implementation will be employed." |
|
}, |
|
) |
|
|
|
|
|
def to_fp32(t): |
|
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t) |
|
|
|
|
|
def to_bf16(t): |
|
return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t) |
|
|
|
|
|
class MixedPrecisionTrainState(struct.PyTreeNode): |
|
"""Train state for use with a single Optax optimizer. |
|
Adapted from flax train_state https://github.com/google/flax/blob/main/flax/training/train_state.py |
|
|
|
Synopsis:: |
|
|
|
state = TrainState.create( |
|
apply_fn=model.apply, |
|
params=variables['params'], |
|
tx=tx) |
|
grad_fn = jax.grad(make_loss_fn(state.apply_fn)) |
|
for batch in data: |
|
grads = grad_fn(state.params, batch) |
|
state = state.apply_gradients(grads=grads) |
|
|
|
Args: |
|
step: Counter starts at 0 and is incremented by every call to |
|
`.apply_gradients()`. |
|
apply_fn: Usually set to `model.apply()`. Kept in this dataclass for |
|
convenience to have a shorter params list for the `train_step()` function |
|
in your training loop. |
|
params: The parameters to be updated by `tx` and used by `apply_fn`. |
|
tx: An Optax gradient transformation. |
|
opt_state: The state for `tx`. |
|
dropout_rng: PRNG key for stochastic operations. |
|
bf16: Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training. |
|
""" |
|
|
|
step: int |
|
apply_fn: Callable = struct.field(pytree_node=False) |
|
get_attention_mask_fn: Callable = struct.field(pytree_node=False) |
|
params: core.FrozenDict[str, Any] |
|
tx: optax.GradientTransformation = struct.field(pytree_node=False) |
|
opt_state: optax.OptState |
|
dropout_rng: jnp.ndarray |
|
max_grad_norm: Optional[float] = 1.0 |
|
|
|
def apply_gradients(self, *, grads, to_dtype, **kwargs): |
|
"""Updates `step`, `params`, `opt_state` and `**kwargs` in return value. |
|
|
|
Note that internally this function calls `.tx.update()` followed by a call |
|
to `optax.apply_updates()` to update `params` and `opt_state`. |
|
|
|
Args: |
|
grads: Gradients that have the same pytree structure as `.params`. |
|
**kwargs: Additional dataclass attributes that should be `.replace()`-ed. |
|
|
|
Returns: |
|
An updated instance of `self` with `step` incremented by one, `params` |
|
and `opt_state` updated by applying `grads`, and additional attributes |
|
replaced as specified by `kwargs`. |
|
""" |
|
|
|
|
|
casted_max_grad_norm = to_dtype(self.max_grad_norm) |
|
g_norm = linear_algebra.global_norm(grads) |
|
g_norm = jnp.maximum(casted_max_grad_norm, g_norm) |
|
grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads) |
|
|
|
|
|
|
|
updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params) |
|
|
|
new_params = optax.apply_updates(self.params, updates) |
|
return self.replace( |
|
step=self.step + 1, |
|
params=new_params, |
|
opt_state=to_dtype(new_opt_state), |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def create(cls, *, apply_fn, params, tx, to_dtype, **kwargs): |
|
"""Creates a new instance with `step=0` and initialized `opt_state`.""" |
|
|
|
opt_state = tx.init(to_dtype(params)) if tx is not None else None |
|
return cls( |
|
step=0, |
|
apply_fn=apply_fn, |
|
params=params, |
|
tx=tx, |
|
opt_state=opt_state, |
|
**kwargs, |
|
) |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxDataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The begin-of-sentence of the decoder. |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_input_length (:obj:`float`, `optional`): |
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). |
|
pad_input_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the input sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
pad_target_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the target sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
""" |
|
|
|
processor: Any |
|
input_padding: Union[bool, str] = "longest" |
|
label_padding: Union[bool, str] = "max_length" |
|
pad_input_to_multiple_of: Optional[int] = None |
|
pad_to_multiple_of_label: Optional[int] = None |
|
max_input_length: Optional[float] = None |
|
max_label_length: Optional[float] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
input_features = [{"input_values": feature["input_values"]} for feature in features] |
|
label_features = [{"input_ids": feature["labels"]} for feature in features] |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
max_length=self.max_input_length, |
|
padding=self.input_padding, |
|
pad_to_multiple_of=self.pad_input_to_multiple_of, |
|
return_tensors="np", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_label_length, |
|
padding=self.label_padding, |
|
pad_to_multiple_of=self.pad_to_multiple_of_label, |
|
return_tensors="np", |
|
) |
|
|
|
labels = labels_batch["input_ids"] |
|
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) |
|
labels = labels.filled(fill_value=-100) |
|
|
|
batch["labels"] = labels |
|
|
|
return batch |
|
|
|
|
|
def get_grouped_indices( |
|
dataset, batch_size: int, rng: Optional[List[int]] = None, mega_batch_mult: Optional[int] = None |
|
) -> np.array: |
|
""" |
|
Adapted from the `get_length_grouped_indices` function in the PyTorch Trainer utils file (https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_pt_utils.py#L486) |
|
Function that returns a list of indices in which each slice of `batch_size` consecutive indices correspond to elements of similar |
|
lengths. To do this, the indices are: |
|
|
|
- randomly permuted (if a JAX rng is specified) |
|
- grouped in mega-batches of size `mega_batch_mult * batch_size` |
|
- sorted by length in each mega-batch |
|
|
|
The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of |
|
maximum length placed first, so that an OOM happens sooner rather than later. |
|
""" |
|
lengths = dataset["input_length"] |
|
|
|
|
|
if mega_batch_mult is None: |
|
mega_batch_mult = min(len(lengths) // (batch_size * 4), 50) |
|
|
|
if mega_batch_mult == 0: |
|
mega_batch_mult = 1 |
|
|
|
|
|
num_samples = len(lengths) |
|
indices = jax.random.permutation(rng, np.arange(num_samples)) if rng is not None else np.arange(num_samples) |
|
|
|
megabatch_size = mega_batch_mult * batch_size |
|
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)] |
|
megabatches = [list(sorted(megabatch, key=lambda i: lengths[i], reverse=True)) for megabatch in megabatches] |
|
|
|
|
|
|
|
megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches] |
|
max_idx = np.argmax(megabatch_maximums).item() |
|
|
|
|
|
megabatches[0], megabatches[max_idx] = megabatches[max_idx], megabatches[0] |
|
|
|
megabatches = np.array([i for megabatch in megabatches for i in megabatch]) |
|
|
|
return megabatches |
|
|
|
|
|
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray: |
|
"""Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by |
|
the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned.""" |
|
num_samples = len(samples_idx) |
|
if drop_last: |
|
samples_to_remove = num_samples % batch_size |
|
if samples_to_remove != 0: |
|
samples_idx = samples_idx[:-samples_to_remove] |
|
sections_split = num_samples // batch_size |
|
samples_idx = samples_idx.reshape((sections_split, batch_size)) |
|
else: |
|
sections_split = math.ceil(num_samples / batch_size) |
|
samples_idx = np.array_split(samples_idx, sections_split) |
|
return samples_idx |
|
|
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step, pred_str=None): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
if pred_str is not None: |
|
|
|
summary_writer.text("eval_predictions", "\n".join(pred_str), step) |
|
|
|
|
|
def write_wandb_log(metrics, step, prefix=None): |
|
if jax.process_index() == 0: |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
if "layer" in k: |
|
log_metrics[f"{k}/"] = v |
|
elif prefix is not None: |
|
log_metrics[f"{prefix}/{k}"] = v |
|
else: |
|
log_metrics[k] = v |
|
wandb.log(log_metrics, step) |
|
|
|
|
|
def write_wandb_pred(pred_str, label_str, step, final_step=False, prefix="eval"): |
|
if jax.process_index() == 0: |
|
|
|
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))] |
|
if not final_step: |
|
|
|
wandb.log( |
|
{ |
|
f"{prefix}/step_{int(step / 1000)}k": wandb.Table( |
|
columns=["label_str", "pred_str"], data=str_data[:50] |
|
) |
|
}, |
|
step, |
|
) |
|
else: |
|
|
|
wandb.log( |
|
{ |
|
f"{prefix}/step_{int(step / 1000)}k_all": wandb.Table( |
|
columns=["label_str", "pred_str"], data=str_data |
|
) |
|
}, |
|
step, |
|
) |
|
|
|
|
|
def create_learning_rate_fn( |
|
num_train_steps: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def ctc_loss( |
|
logits, |
|
logits_attention_mask, |
|
labels, |
|
blank_id, |
|
loss_reduction="mean", |
|
output_emission_dict=False, |
|
log_epsilon=-100000.0, |
|
): |
|
"""Computes CTC loss. |
|
This function performs forward computation over an FSA with `N * 2` states |
|
where `N` is the max number of labels. The states are split into two groups: |
|
Phi states and emission states. a phi-state accepts repetition of |
|
phi (blank)-symbols and transits to emission state when the correct label is |
|
observed. An emission state accepts repetition of the label and transits to |
|
the next phi states at any time (so called epsilon-transition). |
|
Below, `B` denotes the batch size, `T` denotes the time steps in `logits`, |
|
and `N` denotes the time steps in `labels`. |
|
Args: |
|
logits: (B, T, K)-array containing log-probabilities of each class. |
|
logitpaddings: (B, T)-array. Padding indicators for `logits`. |
|
labels: (B, N)-array containing reference integer labels. |
|
labelpaddings: (B, N)-array. Padding indicators for `labels`. Currently, |
|
`labels` must be right-padded, i.e. each row of `labelpaddings` must be |
|
repetition of zeroes, followed by repetition of ones. |
|
blank_id: Id for blank token. |
|
loss_reduction: one of "mean", "sum", "default" |
|
- "none": no reduction is applied. |
|
- "mean": output loss will be divided by target lengths and then the |
|
mean over the batch is taken. |
|
- "sum": output loss are summed over batch |
|
output_emission_dict: whether to output additional information about the emission probs |
|
Returns: |
|
A pair of `(per_seq_loss, aux)`. |
|
per_seq_loss: |
|
(B,)-array containing loss values for each sequence in the batch. |
|
aux: Dictionary containing interim variables used for computing losses. |
|
aux['logalpha_phi']: (T, B, N+1)-array. Log-forward-probabilities of each |
|
phi-state corresponding to the n-th label. |
|
aux['logalpha_emit']: (T, B, N)-array. Log-forward-probabilities of each |
|
emission-state corresponding to the n-th label. |
|
aux['logprobs_phi']: (T, B, 1)-array. Probability of the phi-symbol |
|
corresponding to each time frame. |
|
aux['logprobs_emit']: (T, B, N)-array. Probability of the n-th label |
|
corresponding to each time frame. |
|
""" |
|
|
|
labelpaddings = labels < 0 |
|
|
|
logitpaddings = ~logits_attention_mask |
|
|
|
|
|
batchsize, unused_maxinputlen, num_classes = logits.shape |
|
batchsize_, maxlabellen = labels.shape |
|
|
|
logprobs = jax.nn.log_softmax(logits) |
|
labellens = maxlabellen - jnp.sum(labelpaddings, axis=1).astype(jnp.int32) |
|
|
|
|
|
repeat = (labels[:, :-1] == labels[:, 1:]).astype(jnp.float32) |
|
repeat = jnp.pad(repeat, ((0, 0), (0, 1))) |
|
|
|
logprobs_phi = logprobs[:, :, blank_id : blank_id + 1] |
|
logprobs_phi = jnp.transpose(logprobs_phi, (1, 0, 2)) |
|
|
|
one_hot = jax.nn.one_hot(labels, num_classes=num_classes) |
|
logprobs_emit = jnp.einsum("btk,bnk->btn", logprobs, one_hot) |
|
logprobs_emit = jnp.transpose(logprobs_emit, (1, 0, 2)) |
|
|
|
logalpha_phi_init = jnp.ones((batchsize, maxlabellen + 1)) * log_epsilon |
|
logalpha_phi_init = logalpha_phi_init.at[:, 0].set(0.0) |
|
logalpha_emit_init = jnp.ones((batchsize, maxlabellen)) * log_epsilon |
|
|
|
def loop_body(prev, x): |
|
prev_phi, prev_emit = prev |
|
|
|
prev_phi_orig = prev_phi |
|
prev_phi = prev_phi.at[:, 1:].set(jnp.logaddexp(prev_phi[:, 1:], prev_emit + log_epsilon * repeat)) |
|
|
|
logprob_emit, logprob_phi, pad = x |
|
|
|
|
|
next_emit = jnp.logaddexp(prev_phi[:, :-1] + logprob_emit, prev_emit + logprob_emit) |
|
|
|
next_phi = prev_phi + logprob_phi |
|
|
|
next_phi = next_phi.at[:, 1:].set( |
|
jnp.logaddexp(next_phi[:, 1:], prev_emit + logprob_phi + log_epsilon * (1.0 - repeat)) |
|
) |
|
|
|
pad = pad.reshape((batchsize, 1)) |
|
next_emit = pad * prev_emit + (1.0 - pad) * next_emit |
|
next_phi = pad * prev_phi_orig + (1.0 - pad) * next_phi |
|
|
|
return (next_phi, next_emit), (next_phi, next_emit) |
|
|
|
xs = (logprobs_emit, logprobs_phi, logitpaddings.transpose((1, 0))) |
|
_, (logalpha_phi, logalpha_emit) = jax.lax.scan(loop_body, (logalpha_phi_init, logalpha_emit_init), xs) |
|
|
|
|
|
logalpha_phi_last = logalpha_phi[-1].at[:, 1:].set(jnp.logaddexp(logalpha_phi[-1, :, 1:], logalpha_emit[-1])) |
|
logalpha_phi = logalpha_phi.at[-1].set(logalpha_phi_last) |
|
|
|
|
|
one_hot = jax.nn.one_hot(labellens, num_classes=maxlabellen + 1) |
|
per_seq_loss = -jnp.einsum("bn,bn->b", logalpha_phi_last, one_hot) |
|
|
|
if loss_reduction == "mean": |
|
target_lengths = labelpaddings.shape[-1] - labelpaddings.sum(axis=-1) |
|
loss = (per_seq_loss / target_lengths).mean() |
|
elif loss_reduction == "sum": |
|
loss = per_seq_loss.sum() |
|
else: |
|
loss = per_seq_loss |
|
|
|
if not output_emission_dict: |
|
return loss |
|
|
|
return loss, { |
|
"logalpha_phi": logalpha_phi, |
|
"logalpha_emit": logalpha_emit, |
|
"logprobs_phi": logprobs_phi, |
|
"logprobs_emit": logprobs_emit, |
|
} |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if jax.process_index() == 0: |
|
wandb.init(project=data_args.wandb_project, name=data_args.wandb_name, job_type=data_args.wandb_job_type) |
|
|
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
jax.config.update("jax_default_matmul_precision", training_args.matmul_precision) |
|
logger.info(f"JAX devices: {jax.device_count()}, matmul precision: {training_args.matmul_precision}") |
|
|
|
|
|
raw_datasets = DatasetDict() |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.train_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if training_args.do_eval: |
|
raw_datasets["eval"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=data_args.eval_split_name, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if training_args.do_predict: |
|
test_split = data_args.test_split_name.split("+") |
|
for split in test_split: |
|
raw_datasets[split] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=split, |
|
cache_dir=data_args.dataset_cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval and not training_args.do_predict: |
|
raise ValueError( |
|
"Cannot not train, not do evaluation and not do prediction. At least one of " |
|
"training, evaluation or prediction has to be done." |
|
) |
|
|
|
|
|
if not training_args.do_train: |
|
training_args.num_train_epochs = 1 |
|
|
|
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--audio_column_name` to the correct audio column - one of " |
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: |
|
raise ValueError( |
|
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " |
|
"Make sure to set `--text_column_name` to the correct text column - one of " |
|
f"{', '.join(next(iter(raw_datasets.values())).column_names)}." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
config = Wav2Vec2Config.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
config.update( |
|
{ |
|
"gradient_checkpointing": training_args.gradient_checkpointing, |
|
"activation_dropout": model_args.activation_dropout, |
|
"hidden_dropout": model_args.hidden_dropout, |
|
"feat_proj_dropout": model_args.feat_proj_dropout, |
|
"mask_time_prob": model_args.mask_time_prob, |
|
"vocab_size": tokenizer.vocab_size, |
|
} |
|
) |
|
|
|
if training_args.precision == "full_mixed": |
|
dtype = jnp.bfloat16 |
|
training_args.mixed_precision = True |
|
elif training_args.precision == "half_mixed": |
|
dtype = jnp.bfloat16 |
|
training_args.mixed_precision = False |
|
else: |
|
dtype = jnp.float32 |
|
training_args.mixed_precision = False |
|
|
|
model = FlaxWav2Vec2ForCTC.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
dtype=dtype, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) |
|
) |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) |
|
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) |
|
max_eval_input_length = int(data_args.max_eval_duration_in_seconds * feature_extractor.sampling_rate) if data_args.max_eval_duration_in_seconds else None |
|
max_target_length = data_args.max_label_length |
|
min_target_length = data_args.min_label_length |
|
pad_input_to_multiple_of = data_args.pad_input_to_multiple_of |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
text_column_name = data_args.text_column_name |
|
model_input_name = feature_extractor.model_input_names[0] |
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) |
|
|
|
if training_args.do_predict and data_args.max_test_samples is not None: |
|
for split in test_split: |
|
raw_datasets[split] = raw_datasets[split].select(range(data_args.max_eval_samples)) |
|
|
|
def prepare_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
|
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
|
|
batch[model_input_name] = inputs.input_values[0] |
|
batch["input_length"] = len(batch["input_values"]) |
|
|
|
input_str = batch[text_column_name] |
|
batch["labels"] = tokenizer(input_str).input_ids |
|
batch["labels_length"] = len(batch["labels"]) |
|
return batch |
|
|
|
vectorized_datasets = raw_datasets.map( |
|
prepare_dataset, |
|
remove_columns=next(iter(raw_datasets.values())).column_names, |
|
num_proc=num_workers, |
|
desc="preprocess dataset", |
|
) |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return min_input_length < length < max_input_length |
|
|
|
if training_args.do_train: |
|
vectorized_datasets["train"] = vectorized_datasets["train"].filter( |
|
is_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_length"], |
|
) |
|
|
|
|
|
def is_labels_in_length_range(length): |
|
return min_target_length < length < max_target_length |
|
|
|
if training_args.do_train: |
|
vectorized_datasets["train"] = vectorized_datasets["train"].filter( |
|
is_labels_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["labels_length"], |
|
) |
|
|
|
|
|
if max_eval_input_length is not None: |
|
|
|
def is_eval_audio_in_length_range(length): |
|
return min_input_length < length < max_eval_input_length |
|
|
|
if training_args.do_eval: |
|
vectorized_datasets["eval"] = vectorized_datasets["eval"].filter( |
|
is_eval_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_length"], |
|
) |
|
|
|
if training_args.do_predict: |
|
for split in test_split: |
|
vectorized_datasets[split] = vectorized_datasets[split].filter( |
|
is_eval_audio_in_length_range, |
|
num_proc=num_workers, |
|
input_columns=["input_length"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
wer_metric = load_metric("wer") |
|
cer_metric = load_metric("cer") |
|
|
|
def compute_metrics(pred_ids: List[List[int]], label_ids: List[List[int]]): |
|
padded_ids = np.where(np.asarray(label_ids) == -100, tokenizer.pad_token_id, np.asarray(label_ids)) |
|
|
|
pred_str = tokenizer.batch_decode(pred_ids) |
|
|
|
label_str = tokenizer.batch_decode(padded_ids, group_tokens=False) |
|
|
|
wer = wer_metric.compute(predictions=pred_str, references=label_str) |
|
cer = cer_metric.compute(predictions=pred_str, references=label_str) |
|
|
|
return {"wer": wer, "cer": cer}, pred_str, label_str |
|
|
|
|
|
feature_extractor.save_pretrained(training_args.output_dir) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
config.save_pretrained(training_args.output_dir) |
|
|
|
processor = AutoProcessor.from_pretrained(training_args.output_dir) |
|
|
|
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
input_padding="longest", |
|
pad_input_to_multiple_of=pad_input_to_multiple_of, |
|
max_label_length=data_args.max_label_length, |
|
) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run `pip install tensorboard` to enable." |
|
) |
|
|
|
|
|
if training_args.push_to_hub: |
|
with open(os.path.join(training_args.output_dir, ".gitattributes"), "r+") as f: |
|
git_lfs_extensions = f.read() |
|
if "*.wandb" not in git_lfs_extensions: |
|
f.write("*.wandb filter=lfs diff=lfs merge=lfs -text") |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, token=training_args.hub_token |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
repo = Repository(training_args.output_dir, clone_from=repo_name) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
max_steps = int(training_args.max_steps) |
|
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
batch_size_per_update = train_batch_size * gradient_accumulation_steps |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() |
|
to_dtype = to_bf16 if training_args.mixed_precision else to_fp32 |
|
|
|
if training_args.do_train: |
|
num_train_samples = len(vectorized_datasets["train"]) |
|
steps_per_epoch = num_train_samples // batch_size_per_update |
|
if max_steps > 0: |
|
num_epochs = -(training_args.max_steps // -steps_per_epoch) |
|
total_train_steps = max_steps |
|
else: |
|
num_epochs = int(training_args.num_train_epochs) |
|
total_train_steps = steps_per_epoch * num_epochs |
|
|
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
total_train_steps, |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
layer_norm_params = [ |
|
(name, "scale") |
|
for name in ["layer_norm", "self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"] |
|
] |
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
if training_args.adafactor: |
|
|
|
optim = optax.adafactor( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
dtype_momentum=jnp.bfloat16 if training_args.mixed_precision else jnp.float32, |
|
weight_decay_rate=training_args.weight_decay, |
|
weight_decay_mask=decay_mask_fn, |
|
) |
|
else: |
|
|
|
optim = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
|
|
|
|
if training_args.multisteps and gradient_accumulation_steps > 1: |
|
optim = optax.MultiSteps(optim, gradient_accumulation_steps, use_grad_mean=False) |
|
else: |
|
num_epochs = 0 |
|
total_train_steps = 0 |
|
num_train_samples = 0 |
|
optim = None |
|
|
|
|
|
state = MixedPrecisionTrainState.create( |
|
apply_fn=model.__call__, |
|
get_attention_mask_fn=model._get_feature_vector_attention_mask, |
|
params=model.params, |
|
tx=optim, |
|
to_dtype=to_dtype, |
|
dropout_rng=dropout_rng, |
|
max_grad_norm=training_args.max_grad_norm, |
|
) |
|
|
|
|
|
state = state.replicate() |
|
blank_id = model.config.pad_token_id |
|
|
|
|
|
def train_step(state, batch): |
|
|
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params, minibatch): |
|
labels = minibatch.pop("labels") |
|
logits = state.apply_fn( |
|
**minibatch, |
|
params=params, |
|
dropout_rng=dropout_rng, |
|
freeze_feature_encoder=model_args.freeze_feature_encoder, |
|
train=True, |
|
)[0] |
|
logits_mask = state.get_attention_mask_fn(logits.shape[1], batch["attention_mask"]) |
|
loss = ctc_loss(logits, logits_mask, labels, blank_id, loss_reduction="mean") |
|
|
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
|
|
if gradient_accumulation_steps == 1 or training_args.multisteps: |
|
loss, grad = grad_fn(to_dtype(state.params), batch) |
|
|
|
|
|
else: |
|
|
|
batch = jax.tree_map( |
|
lambda x: x.reshape( |
|
gradient_accumulation_steps, training_args.per_device_train_batch_size, *x.shape[1::] |
|
), |
|
batch, |
|
) |
|
|
|
def accum_minibatch_step(accum_grad, minibatch): |
|
|
|
loss, grad = grad_fn(to_dtype(state.params), minibatch) |
|
return jax.tree_map(jnp.add, accum_grad, grad), loss |
|
|
|
|
|
init_grad = jax.tree_map(jnp.zeros_like, to_dtype(state.params)) |
|
|
|
grad, loss = jax.lax.scan(accum_minibatch_step, init_grad, batch) |
|
|
|
|
|
new_state = state.apply_gradients( |
|
grads=grad, |
|
dropout_rng=new_dropout_rng, |
|
to_dtype=to_dtype, |
|
) |
|
|
|
|
|
layer_grad_norm = jax.tree_map(jnp.linalg.norm, grad) |
|
logs = { |
|
"layer_grad_norm": layer_grad_norm, |
|
"grad_norm": jnp.linalg.norm(jax.tree_util.tree_leaves(layer_grad_norm)), |
|
} |
|
|
|
|
|
layer_param_norm = jax.tree_map(jnp.linalg.norm, new_state.params) |
|
logs["layer_param_norm"] = layer_param_norm |
|
logs["param_norm"] = jnp.linalg.norm(jax.tree_util.tree_leaves(layer_param_norm)) |
|
|
|
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} |
|
metrics.update(logs) |
|
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
|
|
return new_state, metrics |
|
|
|
|
|
def eval_step(params, batch): |
|
labels = batch.pop("labels") |
|
logits = model(**batch, params=params, train=False)[0] |
|
|
|
logits_mask = model._get_feature_vector_attention_mask(logits.shape[1], batch["attention_mask"]) |
|
loss = ctc_loss(logits, logits_mask, labels, blank_id, loss_reduction="mean") |
|
|
|
pred_ids = jnp.argmax(logits, axis=-1) |
|
|
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return metrics, pred_ids |
|
|
|
|
|
if training_args.do_train: |
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
|
|
if training_args.do_eval or training_args.do_predict: |
|
p_eval_step = jax.pmap(eval_step, "batch") |
|
|
|
def run_evaluation(step, final_step=False): |
|
if training_args.do_eval: |
|
|
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
|
|
|
|
eval_samples_idx = get_grouped_indices(vectorized_datasets["eval"], eval_batch_size) |
|
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) |
|
|
|
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): |
|
samples = [vectorized_datasets["eval"][int(idx)] for idx in batch_idx] |
|
batch = data_collator(samples) |
|
labels = batch["labels"] |
|
|
|
try: |
|
metrics, pred_ids = pad_shard_unpad(p_eval_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size) |
|
except TypeError: |
|
continue |
|
eval_preds.extend(jax.device_get(pred_ids.reshape(-1, pred_ids.shape[-1]))) |
|
eval_metrics.append(metrics) |
|
|
|
eval_labels.extend(labels) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) |
|
eval_metrics = to_fp32(eval_metrics) |
|
|
|
|
|
error_rate_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels) |
|
eval_metrics.update(error_rate_metric) |
|
error_rate_desc = " ".join([f"Eval {key}: {value} |" for key, value in error_rate_metric.items()]) |
|
|
|
|
|
desc = f"Step... ({step}/{total_train_steps} | Eval Loss: {eval_metrics['loss']} | {error_rate_desc})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
|
|
write_wandb_log(eval_metrics, step, prefix="eval") |
|
write_wandb_pred(pred_str, label_str, step, final_step=final_step) |
|
|
|
|
|
|
|
def save_checkpoint(step): |
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) |
|
model.save_pretrained(training_args.output_dir, params=params) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
repo.push_to_hub(commit_message=f"{wandb.run.id}: saving weights and logs of step {int(step / 1000)}k", blocking=False) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {num_train_samples}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Num gradient accumulation steps = {gradient_accumulation_steps}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {batch_size_per_update}") |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
logger.info(f" Gradient checkpointing: {config.gradient_checkpointing}") |
|
logger.info(f" Use scan: {config.use_scan}") |
|
logger.info(f" Fuse matmuls: {config.fuse_matmuls}") |
|
|
|
train_time = cur_step = 0 |
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) |
|
for epoch in epochs: |
|
if training_args.do_train: |
|
|
|
train_start = time.time() |
|
|
|
|
|
rng, input_rng = jax.random.split(rng) |
|
|
|
|
|
train_samples_idx = get_grouped_indices(vectorized_datasets["train"], batch_size_per_update, input_rng) |
|
train_batch_idx = generate_batch_splits(train_samples_idx, batch_size_per_update) |
|
|
|
|
|
for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1), 1): |
|
samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx] |
|
batch = data_collator(samples) |
|
batch = shard(batch.data) |
|
try: |
|
state, train_metric = p_train_step(state, batch) |
|
except TypeError as e: |
|
logger.warning("Encountered following error: \n", e) |
|
|
|
cur_step = epoch * (num_train_samples // batch_size_per_update) + step |
|
|
|
if cur_step % training_args.logging_steps == 0: |
|
|
|
train_metric = unreplicate(train_metric) |
|
train_time += time.time() - train_start |
|
|
|
write_wandb_log(to_fp32(train_metric), cur_step, prefix="train") |
|
|
|
|
|
|
|
|
|
epochs.write( |
|
f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']}, Gradient Norm: {train_metric['grad_norm']})" |
|
) |
|
|
|
if cur_step % total_train_steps == 0: |
|
break |
|
|
|
if training_args.eval_steps and cur_step % training_args.eval_steps == 0: |
|
run_evaluation(cur_step, final_step=False) |
|
|
|
if cur_step % training_args.save_steps == 0: |
|
save_checkpoint(cur_step) |
|
|
|
if training_args.eval_steps == 0 and (epoch + 1) != num_epochs: |
|
|
|
run_evaluation(cur_step, final_step=False) |
|
save_checkpoint(cur_step) |
|
|
|
if training_args.do_train: |
|
save_checkpoint(cur_step) |
|
|
|
cur_step = max_steps if max_steps > 0 else cur_step |
|
|
|
if training_args.do_eval: |
|
run_evaluation(cur_step, final_step=True) |
|
|
|
|
|
if training_args.do_predict: |
|
for split in test_split: |
|
|
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
|
|
|
|
eval_samples_idx = get_grouped_indices(vectorized_datasets[split], eval_batch_size) |
|
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) |
|
|
|
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc=f"Predicting {split}...", position=2)): |
|
samples = [vectorized_datasets[split][int(idx)] for idx in batch_idx] |
|
batch = data_collator(samples) |
|
labels = batch["labels"] |
|
|
|
metrics, pred_ids = pad_shard_unpad(p_eval_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size) |
|
eval_preds.extend(jax.device_get(pred_ids.reshape(-1, pred_ids.shape[-1]))) |
|
eval_metrics.append(metrics) |
|
|
|
eval_labels.extend(labels) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) |
|
eval_metrics = to_fp32(eval_metrics) |
|
|
|
|
|
error_rate_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels) |
|
eval_metrics.update(error_rate_metric) |
|
error_rate_desc = " ".join([f"Eval {key}: {value} |" for key, value in error_rate_metric.items()]) |
|
|
|
|
|
desc = f"Step... ({cur_step}/{total_train_steps} | Eval Loss: {eval_metrics['loss']} | {error_rate_desc})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
|
|
write_wandb_log(eval_metrics, cur_step, prefix=split) |
|
write_wandb_pred(pred_str, label_str, cur_step, final_step=True, prefix=split) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|