Erkhembayar Gantulga
commited on
Commit
•
6036d4e
1
Parent(s):
a35f002
Updated README
Browse filesSpecified training datasets
README.md
CHANGED
@@ -1,15 +1,21 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- mn
|
4 |
-
license: apache-2.0
|
5 |
base_model: openai/whisper-small
|
6 |
tags:
|
7 |
-
-
|
|
|
|
|
8 |
metrics:
|
9 |
- wer
|
10 |
model-index:
|
11 |
- name: Whisper Small Mn - Erkhembayar Gantulga
|
12 |
results: []
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -22,19 +28,43 @@ It achieves the following results on the evaluation set:
|
|
22 |
- Loss: 0.1561
|
23 |
- Wer: 19.4492
|
24 |
|
25 |
-
##
|
26 |
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
### Training hyperparameters
|
40 |
|
|
|
1 |
---
|
2 |
language:
|
3 |
- mn
|
|
|
4 |
base_model: openai/whisper-small
|
5 |
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
library_name: transformers
|
9 |
metrics:
|
10 |
- wer
|
11 |
model-index:
|
12 |
- name: Whisper Small Mn - Erkhembayar Gantulga
|
13 |
results: []
|
14 |
+
datasets:
|
15 |
+
- mozilla-foundation/common_voice_17_0
|
16 |
+
- google/fleurs
|
17 |
+
pipeline_tag: automatic-speech-recognition
|
18 |
+
license: apache-2.0
|
19 |
---
|
20 |
|
21 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
28 |
- Loss: 0.1561
|
29 |
- Wer: 19.4492
|
30 |
|
31 |
+
## Training and evaluation data
|
32 |
|
33 |
+
Datasets used for training:
|
34 |
+
- [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0)
|
35 |
+
- [Google Fleurs](https://huggingface.co/datasets/google/fleurs)
|
36 |
|
37 |
+
For training, combined Common Voice 17.0 and Google Fleurs datasets:
|
38 |
|
39 |
+
```
|
40 |
+
from datasets import load_dataset, DatasetDict, concatenate_datasets
|
41 |
+
from datasets import Audio
|
42 |
|
43 |
+
common_voice = DatasetDict()
|
44 |
+
|
45 |
+
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True)
|
46 |
+
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True)
|
47 |
+
|
48 |
+
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000))
|
49 |
+
|
50 |
+
common_voice = common_voice.remove_columns(
|
51 |
+
["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"]
|
52 |
+
)
|
53 |
+
|
54 |
+
google_fleurs = DatasetDict()
|
55 |
+
|
56 |
+
google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True)
|
57 |
+
google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True)
|
58 |
|
59 |
+
google_fleurs = google_fleurs.remove_columns(
|
60 |
+
["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"]
|
61 |
+
)
|
62 |
+
google_fleurs = google_fleurs.rename_column("transcription", "sentence")
|
63 |
|
64 |
+
dataset = DatasetDict()
|
65 |
+
dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]])
|
66 |
+
dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]])
|
67 |
+
```
|
68 |
|
69 |
### Training hyperparameters
|
70 |
|