epsil commited on
Commit
fe36401
1 Parent(s): 48ee474

Upload PPO LunarLander-v2 trained agent

Browse files
LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e8d98cd7e5f851f18a300a4be679bbcdb8fc71a64ef7c79e0e35c393deb565f
3
+ size 144042
LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f798cc62ef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798cc62f80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798cc69050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798cc690e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f798cc69170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f798cc69200>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798cc69290>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f798cc69320>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798cc693b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798cc69440>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798cc694d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f798cc3d3c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651674906.7306237,
51
+ "learning_rate": 0.0001,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANIc175cSqW911AbOl9YMzgRY/U9GvxZuQAAgD8AAIA/8xeOvcO9C7pFvp+6VeQ9tO6Yg7txEro5AACAPwAAgD/aCM49lsdzP5UepDz1UJG+5MyQO24whr0AAAAAAAAAADMJnjxc91y6Rbxjuws0RbbZzYO7uGixNQAAgD8AAIA/zbCIuymoOLpVbNe7XNAxOB4l3rn+zCy3AACAPwAAgD8aquq915OfP7qOtb4z7Ke+uSwtvvIMF74AAAAAAAAAAID/Nj6DQ5E/SITNPkSNib77fDw+KtgHPgAAAAAAAAAAUmyVvulLPryCXtA6FgS5OGVrqD3SXQG6AACAPwAAgD9mDX49/ReLP2WDVj3UAIe+woOhPR7M2b0AAAAAAAAAAGY7fT1cH2i6gMNAvKMsibZ3rvY6Wsf7NQAAgD8AAIA/ZhQIvrg2grk1YB28BrHtOFG1FjqLtM+5AACAPwAAgD9afKg99hAOumvuArpcSpG1fXgtO/ajGDkAAIA/AACAP80JCz3DyRG6Np+3u7U6e7aNa8g66ODoNQAAgD8AAIA/2mJqPntqZj8TKou9DmyLvvhmTD29Vue8AAAAAAAAAACagEq9ctWeP2g+3r3yArK+Ys22vTPGzzwAAAAAAAAAAM1Q2zzDEQy6DpvPuqJLEbb3Vco6Ko7wOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuECC4sesX0CUhpRSlIwBbJRN6AOMAXSUR0CYUkeJHiFTdX2UKGgGaAloD0MIVMkAUEVibUCUhpRSlGgVTUgDaBZHQJhTZa/yoXN1fZQoaAZoCWgPQwihhm9hXS5qQJSGlFKUaBVN0QJoFkdAmFpqgElme3V9lChoBmgJaA9DCHJqZ5jaBF1AlIaUUpRoFU3oA2gWR0CYW6d6cAindX2UKGgGaAloD0MIjnObcC/aYECUhpRSlGgVTegDaBZHQJhcZ8G9pRJ1fZQoaAZoCWgPQwh97C5QUiReQJSGlFKUaBVN6ANoFkdAmGEYt16mf3V9lChoBmgJaA9DCKQAUTBjXmpAlIaUUpRoFU1fAWgWR0CYYy7Lt/nXdX2UKGgGaAloD0MIVBnG3SBoQMCUhpRSlGgVTQIBaBZHQJhjqeI2wV11fZQoaAZoCWgPQwh4flGCfvhgQJSGlFKUaBVN6ANoFkdAmGRPfTCtR3V9lChoBmgJaA9DCI4fKo2YuVlAlIaUUpRoFU3oA2gWR0CYbHCf6Gg0dX2UKGgGaAloD0MIXio25vXfYkCUhpRSlGgVTegDaBZHQJhtkyj59E11fZQoaAZoCWgPQwgDCYofY44cwJSGlFKUaBVNNgFoFkdAmG8r2QGOdXV9lChoBmgJaA9DCPBuZYlOt2pAlIaUUpRoFU2JAWgWR0CYdj7yxzJZdX2UKGgGaAloD0MIqWxYU9mFYkCUhpRSlGgVTegDaBZHQJiZbjQzDXR1fZQoaAZoCWgPQwj+YUuPpqpdQJSGlFKUaBVN6ANoFkdAmJmtVaOghHV9lChoBmgJaA9DCNlbyvli7+Y/lIaUUpRoFU0UAWgWR0CYncWrwOOKdX2UKGgGaAloD0MIGvhRDXuEYkCUhpRSlGgVTegDaBZHQJiiskrwvxp1fZQoaAZoCWgPQwh1sP7PYQNmQJSGlFKUaBVNnQFoFkdAmKcWQfZElXV9lChoBmgJaA9DCOp6ouvC0mJAlIaUUpRoFU1WAmgWR0CYqy0EHMUzdX2UKGgGaAloD0MIG/Slt78tYECUhpRSlGgVTegDaBZHQJiupugpSaV1fZQoaAZoCWgPQwjmlICYhEVKwJSGlFKUaBVNGAFoFkdAmK7mBnSOR3V9lChoBmgJaA9DCAJJ2LeTkEfAlIaUUpRoFU0uAWgWR0CYsJtqYZ2qdX2UKGgGaAloD0MIguMybmoyXUCUhpRSlGgVTegDaBZHQJiwrmRvFWJ1fZQoaAZoCWgPQwg+XHLcKfEzQJSGlFKUaBVNGwFoFkdAmLLYO2AoX3V9lChoBmgJaA9DCNqOqbuy1UBAlIaUUpRoFUv5aBZHQJi0v0SRKYl1fZQoaAZoCWgPQwgVj4tqEThdQJSGlFKUaBVN6ANoFkdAmLV9szl90HV9lChoBmgJaA9DCCbg10gSsmBAlIaUUpRoFU3oA2gWR0CYtl0wJw85dX2UKGgGaAloD0MIaLCp8yiaZ0CUhpRSlGgVTf8BaBZHQJi3e+PBBRh1fZQoaAZoCWgPQwhv2SH+YfskwJSGlFKUaBVNFQFoFkdAmLytp7CzknV9lChoBmgJaA9DCJKvBFJik1pAlIaUUpRoFU3oA2gWR0CYvcZm7J4jdX2UKGgGaAloD0MIcvkP6TcraECUhpRSlGgVTZMBaBZHQJjBe8Zk0791fZQoaAZoCWgPQwgDBkmfVkhaQJSGlFKUaBVN6ANoFkdAmMJWF8G9pXV9lChoBmgJaA9DCNswCoLHUzxAlIaUUpRoFUvlaBZHQJjDd6By0a91fZQoaAZoCWgPQwg+PbZlwOxfQJSGlFKUaBVN6ANoFkdAmMRQJLM9sHV9lChoBmgJaA9DCGMmUS/4rWZAlIaUUpRoFU3oA2gWR0CYxVh1Tzd2dX2UKGgGaAloD0MIZTcz+tEIIMCUhpRSlGgVTUABaBZHQJjKNUBGQS11fZQoaAZoCWgPQwgrL/mf/BNqQJSGlFKUaBVNpwFoFkdAmM/Bvm5lOHV9lChoBmgJaA9DCN/42jNLMFlAlIaUUpRoFU3oA2gWR0CY0Lup0fYBdX2UKGgGaAloD0MI1jVaDvQgGECUhpRSlGgVTRwBaBZHQJjWChkAggZ1fZQoaAZoCWgPQwjoZn+g3JdQwJSGlFKUaBVNHAFoFkdAmNdSvLX+VHV9lChoBmgJaA9DCGFT51HxoUHAlIaUUpRoFU0yAWgWR0CZDPtBfKISdX2UKGgGaAloD0MIkrBvJxHZVkCUhpRSlGgVTegDaBZHQJkWpHuqm0p1fZQoaAZoCWgPQwhTBg5o6cRfQJSGlFKUaBVN6ANoFkdAmRb/PLPldXV9lChoBmgJaA9DCI0lrI2x0mFAlIaUUpRoFU3oA2gWR0CZGWHy3CsPdX2UKGgGaAloD0MIVJCfjVxwYUCUhpRSlGgVTegDaBZHQJkZeys0YTF1fZQoaAZoCWgPQwins5PBUTtVQJSGlFKUaBVN6ANoFkdAmRxi79Q40nV9lChoBmgJaA9DCC5ZFeEm+1xAlIaUUpRoFU3oA2gWR0CZInQd0aIfdX2UKGgGaAloD0MIryR5ru+IYECUhpRSlGgVTegDaBZHQJkpuQEIPbx1fZQoaAZoCWgPQwhiaHVyBlllQJSGlFKUaBVN6ANoFkdAmSs1+uvECXV9lChoBmgJaA9DCNbh6CrdiTXAlIaUUpRoFUvhaBZHQJkukKfFrEd1fZQoaAZoCWgPQwj6RQn6i+hjQJSGlFKUaBVN6ANoFkdAmS/OocaOxXV9lChoBmgJaA9DCEPlX8urgGNAlIaUUpRoFU3oA2gWR0CZM137UG3XdX2UKGgGaAloD0MINA9gkV+dXkCUhpRSlGgVTegDaBZHQJk0uYSg5BF1fZQoaAZoCWgPQwjwiXWqfGs4QJSGlFKUaBVL5mgWR0CZNStLteD4dX2UKGgGaAloD0MIey3ovTEuXkCUhpRSlGgVTegDaBZHQJk6jKlpGnZ1fZQoaAZoCWgPQwgQW3o0VQZiQJSGlFKUaBVN6ANoFkdAmUCp9AooeHV9lChoBmgJaA9DCFOxMa8jlFNAlIaUUpRoFU3oA2gWR0CZQa9qUNaydX2UKGgGaAloD0MI71nXaLnGYUCUhpRSlGgVTegDaBZHQJlIZ2dNFjN1fZQoaAZoCWgPQwinsFJBxXlnQJSGlFKUaBVN0QJoFkdAmW8F6Vt4zXV9lChoBmgJaA9DCMefqGxYWynAlIaUUpRoFUvlaBZHQJlv1lkH2RJ1fZQoaAZoCWgPQwj0F3rE6JlXQJSGlFKUaBVN6ANoFkdAmXvvRRdhRnV9lChoBmgJaA9DCNS2YRQEW2tAlIaUUpRoFU2pA2gWR0CZfkBfKISEdX2UKGgGaAloD0MIMGKfAIqhX0CUhpRSlGgVTegDaBZHQJmDebkOqed1fZQoaAZoCWgPQwgYzjXM0PdfQJSGlFKUaBVN6ANoFkdAmYVtUsFt9HV9lChoBmgJaA9DCApLPKBsCvK/lIaUUpRoFUv5aBZHQJmPH/T9bX91fZQoaAZoCWgPQwglXTP5Zu9gQJSGlFKUaBVN6ANoFkdAmZUhxkupTHV9lChoBmgJaA9DCHtntFXJPGNAlIaUUpRoFU3oA2gWR0CZlnIF/x2CdX2UKGgGaAloD0MI0GOUZ17WXECUhpRSlGgVTegDaBZHQJmZlfPX05F1fZQoaAZoCWgPQwg26Etv/+NgQJSGlFKUaBVN6ANoFkdAmZqsm4RVZXV9lChoBmgJaA9DCEyln3B2awjAlIaUUpRoFU0rAWgWR0CZnDkjHGS7dX2UKGgGaAloD0MI1LX2PlWXVECUhpRSlGgVTegDaBZHQJmdijKxLTR1fZQoaAZoCWgPQwiJmBJJdJBiQJSGlFKUaBVN6ANoFkdAmZ6Kp97Wu3V9lChoBmgJaA9DCE94CU79xGFAlIaUUpRoFU3oA2gWR0CZnuk/r0J4dX2UKGgGaAloD0MI4qyImuieYUCUhpRSlGgVTegDaBZHQJmi4G0NSZV1fZQoaAZoCWgPQwiufmySH3H9P5SGlFKUaBVL4WgWR0CZo7P7vXsgdX2UKGgGaAloD0MIjlcgelLRXkCUhpRSlGgVTegDaBZHQJmndAWznih1fZQoaAZoCWgPQwiezhWlhDRlQJSGlFKUaBVN6ANoFkdAma6rk0aZQnV9lChoBmgJaA9DCDUomgewKAdAlIaUUpRoFU1AAWgWR0CZs8Ogg5imdX2UKGgGaAloD0MIqP3WTpS0EcCUhpRSlGgVTUEBaBZHQJm0WevpyIZ1fZQoaAZoCWgPQwgEqn8QyTAywJSGlFKUaBVNHgFoFkdAmbcMeCCjDnV9lChoBmgJaA9DCMcpOpLLx2BAlIaUUpRoFU3oA2gWR0CZuMwKSgXedX2UKGgGaAloD0MImPc40wTWakCUhpRSlGgVTZUBaBZHQJm5HPhQ3xZ1fZQoaAZoCWgPQwhDOdGuQp9bQJSGlFKUaBVN6ANoFkdAmbmG0JF9a3V9lChoBmgJaA9DCMk+yLJgAiHAlIaUUpRoFU01AWgWR0CZ4fJm/WUbdX2UKGgGaAloD0MIMZi/QmYQakCUhpRSlGgVTZwBaBZHQJniDDl5nlJ1fZQoaAZoCWgPQwiqY5XSs/hvQJSGlFKUaBVNhQJoFkdAmeJyUX531XV9lChoBmgJaA9DCNMyUu+pQl9AlIaUUpRoFU3oA2gWR0CZ4qkcCHRDdX2UKGgGaAloD0MI9DKK5RYTYUCUhpRSlGgVTegDaBZHQJnnEfU4JeF1fZQoaAZoCWgPQwi0d0ZblbpMQJSGlFKUaBVN6ANoFkdAmfNF2/zreXV9lChoBmgJaA9DCDEHQUerSiFAlIaUUpRoFUv8aBZHQJn1Kv8qFyt1fZQoaAZoCWgPQwjDEDl9vR9gQJSGlFKUaBVN6ANoFkdAmfqvTLGJenV9lChoBmgJaA9DCOilYmNeUFxAlIaUUpRoFU3oA2gWR0CZ/20UXYUWdX2UKGgGaAloD0MI9iaG5GT5XECUhpRSlGgVTegDaBZHQJoBVgTh5xB1fZQoaAZoCWgPQwgKTRJLStViQJSGlFKUaBVN6ANoFkdAmgu2ax5cDHV9lChoBmgJaA9DCGUAqOLGgV5AlIaUUpRoFU3oA2gWR0CaIWRKYiPidX2UKGgGaAloD0MISZ9W0Z/lYECUhpRSlGgVTegDaBZHQJoiFDzAeq91fZQoaAZoCWgPQwhqT8k5MZZgQJSGlFKUaBVN6ANoFkdAmiVwM6RyO3V9lChoBmgJaA9DCIZzDTO0a2BAlIaUUpRoFU3oA2gWR0CaJ22Bas6rdX2UKGgGaAloD0MI8NsQ4zUNYECUhpRSlGgVTegDaBZHQJonxlFtsN51fZQoaAZoCWgPQwgY7IZtC7NiQJSGlFKUaBVN6ANoFkdAmigxakhzNnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:280c196b290d65dde25dfdbf1b86fd5166d037596f063d8950e96790ed1061f0
3
+ size 84829
LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8cc2336b9db827ee4dc37ec183f98bf07c5ca8995c929226a40d9ec671fd95
3
+ size 43201
LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 154.50 +/- 82.63
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 124.30 +/- 74.63
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f798cc62ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798cc62f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798cc69050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798cc690e0>", "_build": "<function ActorCriticPolicy._build at 0x7f798cc69170>", "forward": "<function ActorCriticPolicy.forward at 0x7f798cc69200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798cc69290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f798cc69320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798cc693b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798cc69440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798cc694d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f798cc3d3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651672739.957, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB22j32jCu66pThu6HqbjValpO7TmfRtAAAgD8AAIA/Zm05vcPtGrpL56m7AIXhtSgyEjva08M6AACAPwAAgD8wDbk+qI7UvGqSIzzBnoW6KKP8vcoO2roAAIA/AACAPzMYSj70vKO8zyuXPE2x+LoidQ2+hp/EuwAAgD8AAIA/Jucivj13Gz5PnAM+8qtnvtksiL12i089AAAAAAAAAACayTW81U5dPsERMbwG30u+1yQlu3nHhL0AAAAAAAAAAM2SQz64qN06aPdnuwmEQri/nYw8vhovuQAAgD8AAIA/oNkrvvZDQzuONzC5XJJLNlMmxLw7k0w4AACAPwAAgD8ARcI9KWBuur3SX7tAtgC29sBXO303gjoAAIA/AACAP81hE772aB45AtJiOFTdkLYYoTC80ABFNgAAgD8AAIA/khm1vhdOIDwKhx+65kK7Nz6tLb0CNDo5AACAPwAAgD8A4A27rB0APsX0Wb1VRg++xIyYvUa//DwAAAAAAAAAABMuHj4K7lW7C42eu+zYGzmOm8+8sjGPOgAAgD8AAIA/bccYPuwN5buYXsq6I9iHONMjOb2mlPg5AACAPwAAgD/W9Z8+wV/TPYIgpjsSvwm+MpWuPFMtMT0AAAAAAAAAALPmjL1cZ2i6VXmyu+N4JTcmtQa76hdttgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8l8gCJCSXkCUhpRSlIwBbJRN6AOMAXSUR0CDNV+xW1c/dX2UKGgGaAloD0MIX3tmSYCDVkCUhpRSlGgVTegDaBZHQINBj+glF+d1fZQoaAZoCWgPQwgXSFD8GPhZQJSGlFKUaBVN6ANoFkdAg0Z5hBqsVHV9lChoBmgJaA9DCJ4kXTP5UVpAlIaUUpRoFU3oA2gWR0CDS9UPQOWjdX2UKGgGaAloD0MI4iL3dHXHHMCUhpRSlGgVTREBaBZHQINPJC+lCTl1fZQoaAZoCWgPQwhaf0sA/k5TQJSGlFKUaBVN6ANoFkdAg1UqDCgsb3V9lChoBmgJaA9DCJShKqbS9UHAlIaUUpRoFU01AWgWR0CDYDoDgZTAdX2UKGgGaAloD0MIeXb51oftNsCUhpRSlGgVTbsBaBZHQINuskOZssR1fZQoaAZoCWgPQwhS0Vj7OxRUQJSGlFKUaBVN6ANoFkdAg4Sb+98JD3V9lChoBmgJaA9DCJfhP91A42BAlIaUUpRoFU3oA2gWR0CDhxOZ9d/sdX2UKGgGaAloD0MI3qzB+6p9WUCUhpRSlGgVTegDaBZHQIOKR08vEjx1fZQoaAZoCWgPQwjr/UY7bvhjQJSGlFKUaBVN6ANoFkdAg5KCZfD1oXV9lChoBmgJaA9DCOm3rwPnYGFAlIaUUpRoFU3oA2gWR0CDvGMlTm4idX2UKGgGaAloD0MIpOTVOQbKVUCUhpRSlGgVTegDaBZHQIO84lWwNb11fZQoaAZoCWgPQwh8taM4R3ZZQJSGlFKUaBVN6ANoFkdAg8QTgdfb9XV9lChoBmgJaA9DCMKJ6NfWY1RAlIaUUpRoFU3oA2gWR0CDyM20AtFsdX2UKGgGaAloD0MIKENVTKXTWkCUhpRSlGgVTegDaBZHQIQfNQTEit91fZQoaAZoCWgPQwj+X3XkSOlRQJSGlFKUaBVN6ANoFkdAhCtgn+hoNHV9lChoBmgJaA9DCAQeGEB4VGBAlIaUUpRoFU3oA2gWR0CEMFOsT37DdX2UKGgGaAloD0MI+rZgqS6QVkCUhpRSlGgVTegDaBZHQIQ1sdRzijt1fZQoaAZoCWgPQwjxuRPsv1pOQJSGlFKUaBVN6ANoFkdAhDjneizsyHV9lChoBmgJaA9DCJerH5vk9F1AlIaUUpRoFU3oA2gWR0CEPp0CA+Y/dX2UKGgGaAloD0MIGedvQiHcWECUhpRSlGgVTegDaBZHQIRI9zKcNH91fZQoaAZoCWgPQwjYEByXcZ5XQJSGlFKUaBVN6ANoFkdAhFYfQjUutnV9lChoBmgJaA9DCObrMvynwFxAlIaUUpRoFU3oA2gWR0CEaOd92HLzdX2UKGgGaAloD0MIJA1uawvQUUCUhpRSlGgVTegDaBZHQIRrG7UXpGF1fZQoaAZoCWgPQwh9W7BUF45eQJSGlFKUaBVN6ANoFkdAhG4Z0r9VFXV9lChoBmgJaA9DCCi5wyYyflVAlIaUUpRoFU3oA2gWR0CEdiUi6g/UdX2UKGgGaAloD0MI5pMVw9XJIMCUhpRSlGgVTT0BaBZHQISK4evIOpd1fZQoaAZoCWgPQwg3jILgccdgQJSGlFKUaBVN6ANoFkdAhJ6aAe7tiXV9lChoBmgJaA9DCN44Kcx7s1hAlIaUUpRoFU3oA2gWR0CEnxas6q82dX2UKGgGaAloD0MIRKhSswc1XECUhpRSlGgVTegDaBZHQISlxb0OEuh1fZQoaAZoCWgPQwi4rMJmANdkQJSGlFKUaBVN6ANoFkdAhKpkcjqv/3V9lChoBmgJaA9DCHC1TlyOHFVAlIaUUpRoFU3oA2gWR0CFAeHD7655dX2UKGgGaAloD0MI6Xx4liDrX0CUhpRSlGgVTegDaBZHQIUPXbsWweN1fZQoaAZoCWgPQwiamZmZmZRfQJSGlFKUaBVN6ANoFkdAhRT8+zMRpXV9lChoBmgJaA9DCPBquTMTwl9AlIaUUpRoFU3oA2gWR0CFGz51vES/dX2UKGgGaAloD0MIscItH0nyXUCUhpRSlGgVTegDaBZHQIUfBOgxrSF1fZQoaAZoCWgPQwhrYRbauQNhQJSGlFKUaBVN6ANoFkdAhScfM4cWCXV9lChoBmgJaA9DCNnO91PjjFhAlIaUUpRoFU3oA2gWR0CFM7R5TqB3dX2UKGgGaAloD0MIzNHj9zbDQ8CUhpRSlGgVTWwBaBZHQIVG1nkDIR11fZQoaAZoCWgPQwh6bTZWYt1dQJSGlFKUaBVN6ANoFkdAhVgONgjQiXV9lChoBmgJaA9DCFW9/E6TTFtAlIaUUpRoFU3oA2gWR0CFWspSaVlgdX2UKGgGaAloD0MId4apLXUIUECUhpRSlGgVTegDaBZHQIVeN52Qnx91fZQoaAZoCWgPQwjT9NkB1wdLQJSGlFKUaBVN6ANoFkdAhWe2vStvGnV9lChoBmgJaA9DCLOVl/xPHlJAlIaUUpRoFU3oA2gWR0CFf2aa1Cw9dX2UKGgGaAloD0MIsaVHUz2gV0CUhpRSlGgVTegDaBZHQIWTnf4yoGZ1fZQoaAZoCWgPQwiu00hL5aJdQJSGlFKUaBVN6ANoFkdAhZQXLeQ+2XV9lChoBmgJaA9DCGSw4lRrm1xAlIaUUpRoFU3oA2gWR0CFm0kFfReDdX2UKGgGaAloD0MIx/KuesCQWkCUhpRSlGgVTegDaBZHQIWf/njhky11fZQoaAZoCWgPQwhOuFfmre9cQJSGlFKUaBVN6ANoFkdAhgT+UQkHEHV9lChoBmgJaA9DCHh7EALyEl5AlIaUUpRoFU3oA2gWR0CGCpATIvJzdX2UKGgGaAloD0MI3PKRlPRbXkCUhpRSlGgVTegDaBZHQIYQhzDGcWl1fZQoaAZoCWgPQwjtfhXgu5FUQJSGlFKUaBVN6ANoFkdAhhQmuTzNEHV9lChoBmgJaA9DCE+WWu83qmBAlIaUUpRoFU3oA2gWR0CGGlv/io87dX2UKGgGaAloD0MIio7k8h+zVkCUhpRSlGgVTegDaBZHQIYmIIY3vQZ1fZQoaAZoCWgPQwgnaJPDJ05iQJSGlFKUaBVN6ANoFkdAhjkKqfe1r3V9lChoBmgJaA9DCLjM6bKY711AlIaUUpRoFU3oA2gWR0CGSYE2YOUddX2UKGgGaAloD0MIS8gHPRsEYkCUhpRSlGgVTegDaBZHQIZL9wgkkbB1fZQoaAZoCWgPQwhkIqXZPGNhQJSGlFKUaBVN6ANoFkdAhk9lb3XZoXV9lChoBmgJaA9DCNcUyOwsuktAlIaUUpRoFU3oA2gWR0CGWHEaVD8cdX2UKGgGaAloD0MIFXMQdLSEYUCUhpRSlGgVTegDaBZHQIZvx7gKnel1fZQoaAZoCWgPQwghBU8hV+ZgQJSGlFKUaBVN6ANoFkdAhoSUIkZ75XV9lChoBmgJaA9DCLpoyHiUxFlAlIaUUpRoFU3oA2gWR0CGhRR0EHMVdX2UKGgGaAloD0MIa4E9JlIxV0CUhpRSlGgVTegDaBZHQIaMT9S/CZZ1fZQoaAZoCWgPQwi4yagyjD9YQJSGlFKUaBVN6ANoFkdAhpEyYoiLVHV9lChoBmgJaA9DCIuMDkjCg1xAlIaUUpRoFU3oA2gWR0CG+4jPfKp2dX2UKGgGaAloD0MI6dFUT+ZWXUCUhpRSlGgVTegDaBZHQIcBA53kgfV1fZQoaAZoCWgPQwiZEHNJ1ZplQJSGlFKUaBVN6ANoFkdAhwdcJMQEp3V9lChoBmgJaA9DCIP7AQ8MsmJAlIaUUpRoFU3oA2gWR0CHC1muDBdldX2UKGgGaAloD0MISpo/prXxIcCUhpRSlGgVTWMBaBZHQIcQuKdhAnl1fZQoaAZoCWgPQwj9uz5z1rRXQJSGlFKUaBVN6ANoFkdAhxH1nuiN83V9lChoBmgJaA9DCGXggJYuLGFAlIaUUpRoFU3oA2gWR0CHHYVymygPdX2UKGgGaAloD0MIFNGvrZ+uXkCUhpRSlGgVTegDaBZHQIcuy4FzMid1fZQoaAZoCWgPQwhl/PuMC39ZQJSGlFKUaBVN6ANoFkdAhz19kz41xnV9lChoBmgJaA9DCJ2+nq9Z41pAlIaUUpRoFU3oA2gWR0CHP6H+IdlvdX2UKGgGaAloD0MIDeTZ5VsrWkCUhpRSlGgVTegDaBZHQIdCkR8MNMJ1fZQoaAZoCWgPQwhJgJpatlbyP5SGlFKUaBVNbgFoFkdAh0enxz7uUnV9lChoBmgJaA9DCFHbhlGQhGFAlIaUUpRoFU3oA2gWR0CHSmkiUxEfdX2UKGgGaAloD0MIV2DI6tYmZECUhpRSlGgVTegDaBZHQIddx8D0UXZ1fZQoaAZoCWgPQwjekbHa/A9VQJSGlFKUaBVN6ANoFkdAh27QzUI9knV9lChoBmgJaA9DCAge3941ilVAlIaUUpRoFU3oA2gWR0CHbzqs2eg+dX2UKGgGaAloD0MIiEZ3EDviYECUhpRSlGgVTegDaBZHQId1OQnx8Up1fZQoaAZoCWgPQwjXEvJBT8phQJSGlFKUaBVN6ANoFkdAh95Y7ihnJ3V9lChoBmgJaA9DCLLxYItdI2JAlIaUUpRoFU3oA2gWR0CH4/snAqNIdX2UKGgGaAloD0MIzvqUY7J5VUCUhpRSlGgVTegDaBZHQIfqFjd56dF1fZQoaAZoCWgPQwgmGM41zGJgQJSGlFKUaBVN6ANoFkdAh/OHoHLRr3V9lChoBmgJaA9DCHwMVpzq3GBAlIaUUpRoFU3oA2gWR0CH9NSy+pOvdX2UKGgGaAloD0MIodgKmhaQYkCUhpRSlGgVTegDaBZHQIgAqzPa+N91fZQoaAZoCWgPQwiYaJCCp2xgQJSGlFKUaBVN6ANoFkdAiBLhrN4Z/HV9lChoBmgJaA9DCDum7souo1dAlIaUUpRoFU3oA2gWR0CIIdR1oxpMdX2UKGgGaAloD0MI198SgP+3YECUhpRSlGgVTegDaBZHQIgkBJXhfjV1fZQoaAZoCWgPQwgs8uuH2JRXQJSGlFKUaBVN6ANoFkdAiCbw2/BWP3V9lChoBmgJaA9DCI1feCXJll9AlIaUUpRoFU3oA2gWR0CIK+gUUO/ddX2UKGgGaAloD0MId6G5TiPsYECUhpRSlGgVTegDaBZHQIguk1Q66rh1fZQoaAZoCWgPQwhyqN+FrSpcQJSGlFKUaBVN6ANoFkdAiEEl7laKUHV9lChoBmgJaA9DCGn/A6xVAl5AlIaUUpRoFU3oA2gWR0CIUlvo/zJ7dX2UKGgGaAloD0MIms3jMJiLYUCUhpRSlGgVTegDaBZHQIhSx9d/rjZ1fZQoaAZoCWgPQwj4iJgSSfQOQJSGlFKUaBVL6mgWR0CIU+fSx7iRdX2UKGgGaAloD0MIca32sBeDW0CUhpRSlGgVTegDaBZHQIhYtiUgSvl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f798cc62ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f798cc62f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f798cc69050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f798cc690e0>", "_build": "<function ActorCriticPolicy._build at 0x7f798cc69170>", "forward": "<function ActorCriticPolicy.forward at 0x7f798cc69200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f798cc69290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f798cc69320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f798cc693b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f798cc69440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f798cc694d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f798cc3d3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651674906.7306237, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANIc175cSqW911AbOl9YMzgRY/U9GvxZuQAAgD8AAIA/8xeOvcO9C7pFvp+6VeQ9tO6Yg7txEro5AACAPwAAgD/aCM49lsdzP5UepDz1UJG+5MyQO24whr0AAAAAAAAAADMJnjxc91y6Rbxjuws0RbbZzYO7uGixNQAAgD8AAIA/zbCIuymoOLpVbNe7XNAxOB4l3rn+zCy3AACAPwAAgD8aquq915OfP7qOtb4z7Ke+uSwtvvIMF74AAAAAAAAAAID/Nj6DQ5E/SITNPkSNib77fDw+KtgHPgAAAAAAAAAAUmyVvulLPryCXtA6FgS5OGVrqD3SXQG6AACAPwAAgD9mDX49/ReLP2WDVj3UAIe+woOhPR7M2b0AAAAAAAAAAGY7fT1cH2i6gMNAvKMsibZ3rvY6Wsf7NQAAgD8AAIA/ZhQIvrg2grk1YB28BrHtOFG1FjqLtM+5AACAPwAAgD9afKg99hAOumvuArpcSpG1fXgtO/ajGDkAAIA/AACAP80JCz3DyRG6Np+3u7U6e7aNa8g66ODoNQAAgD8AAIA/2mJqPntqZj8TKou9DmyLvvhmTD29Vue8AAAAAAAAAACagEq9ctWeP2g+3r3yArK+Ys22vTPGzzwAAAAAAAAAAM1Q2zzDEQy6DpvPuqJLEbb3Vco6Ko7wOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuECC4sesX0CUhpRSlIwBbJRN6AOMAXSUR0CYUkeJHiFTdX2UKGgGaAloD0MIVMkAUEVibUCUhpRSlGgVTUgDaBZHQJhTZa/yoXN1fZQoaAZoCWgPQwihhm9hXS5qQJSGlFKUaBVN0QJoFkdAmFpqgElme3V9lChoBmgJaA9DCHJqZ5jaBF1AlIaUUpRoFU3oA2gWR0CYW6d6cAindX2UKGgGaAloD0MIjnObcC/aYECUhpRSlGgVTegDaBZHQJhcZ8G9pRJ1fZQoaAZoCWgPQwh97C5QUiReQJSGlFKUaBVN6ANoFkdAmGEYt16mf3V9lChoBmgJaA9DCKQAUTBjXmpAlIaUUpRoFU1fAWgWR0CYYy7Lt/nXdX2UKGgGaAloD0MIVBnG3SBoQMCUhpRSlGgVTQIBaBZHQJhjqeI2wV11fZQoaAZoCWgPQwh4flGCfvhgQJSGlFKUaBVN6ANoFkdAmGRPfTCtR3V9lChoBmgJaA9DCI4fKo2YuVlAlIaUUpRoFU3oA2gWR0CYbHCf6Gg0dX2UKGgGaAloD0MIXio25vXfYkCUhpRSlGgVTegDaBZHQJhtkyj59E11fZQoaAZoCWgPQwgDCYofY44cwJSGlFKUaBVNNgFoFkdAmG8r2QGOdXV9lChoBmgJaA9DCPBuZYlOt2pAlIaUUpRoFU2JAWgWR0CYdj7yxzJZdX2UKGgGaAloD0MIqWxYU9mFYkCUhpRSlGgVTegDaBZHQJiZbjQzDXR1fZQoaAZoCWgPQwj+YUuPpqpdQJSGlFKUaBVN6ANoFkdAmJmtVaOghHV9lChoBmgJaA9DCNlbyvli7+Y/lIaUUpRoFU0UAWgWR0CYncWrwOOKdX2UKGgGaAloD0MIGvhRDXuEYkCUhpRSlGgVTegDaBZHQJiiskrwvxp1fZQoaAZoCWgPQwh1sP7PYQNmQJSGlFKUaBVNnQFoFkdAmKcWQfZElXV9lChoBmgJaA9DCOp6ouvC0mJAlIaUUpRoFU1WAmgWR0CYqy0EHMUzdX2UKGgGaAloD0MIG/Slt78tYECUhpRSlGgVTegDaBZHQJiupugpSaV1fZQoaAZoCWgPQwjmlICYhEVKwJSGlFKUaBVNGAFoFkdAmK7mBnSOR3V9lChoBmgJaA9DCAJJ2LeTkEfAlIaUUpRoFU0uAWgWR0CYsJtqYZ2qdX2UKGgGaAloD0MIguMybmoyXUCUhpRSlGgVTegDaBZHQJiwrmRvFWJ1fZQoaAZoCWgPQwg+XHLcKfEzQJSGlFKUaBVNGwFoFkdAmLLYO2AoX3V9lChoBmgJaA9DCNqOqbuy1UBAlIaUUpRoFUv5aBZHQJi0v0SRKYl1fZQoaAZoCWgPQwgVj4tqEThdQJSGlFKUaBVN6ANoFkdAmLV9szl90HV9lChoBmgJaA9DCCbg10gSsmBAlIaUUpRoFU3oA2gWR0CYtl0wJw85dX2UKGgGaAloD0MIaLCp8yiaZ0CUhpRSlGgVTf8BaBZHQJi3e+PBBRh1fZQoaAZoCWgPQwhv2SH+YfskwJSGlFKUaBVNFQFoFkdAmLytp7CzknV9lChoBmgJaA9DCJKvBFJik1pAlIaUUpRoFU3oA2gWR0CYvcZm7J4jdX2UKGgGaAloD0MIcvkP6TcraECUhpRSlGgVTZMBaBZHQJjBe8Zk0791fZQoaAZoCWgPQwgDBkmfVkhaQJSGlFKUaBVN6ANoFkdAmMJWF8G9pXV9lChoBmgJaA9DCNswCoLHUzxAlIaUUpRoFUvlaBZHQJjDd6By0a91fZQoaAZoCWgPQwg+PbZlwOxfQJSGlFKUaBVN6ANoFkdAmMRQJLM9sHV9lChoBmgJaA9DCGMmUS/4rWZAlIaUUpRoFU3oA2gWR0CYxVh1Tzd2dX2UKGgGaAloD0MIZTcz+tEIIMCUhpRSlGgVTUABaBZHQJjKNUBGQS11fZQoaAZoCWgPQwgrL/mf/BNqQJSGlFKUaBVNpwFoFkdAmM/Bvm5lOHV9lChoBmgJaA9DCN/42jNLMFlAlIaUUpRoFU3oA2gWR0CY0Lup0fYBdX2UKGgGaAloD0MI1jVaDvQgGECUhpRSlGgVTRwBaBZHQJjWChkAggZ1fZQoaAZoCWgPQwjoZn+g3JdQwJSGlFKUaBVNHAFoFkdAmNdSvLX+VHV9lChoBmgJaA9DCGFT51HxoUHAlIaUUpRoFU0yAWgWR0CZDPtBfKISdX2UKGgGaAloD0MIkrBvJxHZVkCUhpRSlGgVTegDaBZHQJkWpHuqm0p1fZQoaAZoCWgPQwhTBg5o6cRfQJSGlFKUaBVN6ANoFkdAmRb/PLPldXV9lChoBmgJaA9DCI0lrI2x0mFAlIaUUpRoFU3oA2gWR0CZGWHy3CsPdX2UKGgGaAloD0MIVJCfjVxwYUCUhpRSlGgVTegDaBZHQJkZeys0YTF1fZQoaAZoCWgPQwins5PBUTtVQJSGlFKUaBVN6ANoFkdAmRxi79Q40nV9lChoBmgJaA9DCC5ZFeEm+1xAlIaUUpRoFU3oA2gWR0CZInQd0aIfdX2UKGgGaAloD0MIryR5ru+IYECUhpRSlGgVTegDaBZHQJkpuQEIPbx1fZQoaAZoCWgPQwhiaHVyBlllQJSGlFKUaBVN6ANoFkdAmSs1+uvECXV9lChoBmgJaA9DCNbh6CrdiTXAlIaUUpRoFUvhaBZHQJkukKfFrEd1fZQoaAZoCWgPQwj6RQn6i+hjQJSGlFKUaBVN6ANoFkdAmS/OocaOxXV9lChoBmgJaA9DCEPlX8urgGNAlIaUUpRoFU3oA2gWR0CZM137UG3XdX2UKGgGaAloD0MINA9gkV+dXkCUhpRSlGgVTegDaBZHQJk0uYSg5BF1fZQoaAZoCWgPQwjwiXWqfGs4QJSGlFKUaBVL5mgWR0CZNStLteD4dX2UKGgGaAloD0MIey3ovTEuXkCUhpRSlGgVTegDaBZHQJk6jKlpGnZ1fZQoaAZoCWgPQwgQW3o0VQZiQJSGlFKUaBVN6ANoFkdAmUCp9AooeHV9lChoBmgJaA9DCFOxMa8jlFNAlIaUUpRoFU3oA2gWR0CZQa9qUNaydX2UKGgGaAloD0MI71nXaLnGYUCUhpRSlGgVTegDaBZHQJlIZ2dNFjN1fZQoaAZoCWgPQwinsFJBxXlnQJSGlFKUaBVN0QJoFkdAmW8F6Vt4zXV9lChoBmgJaA9DCMefqGxYWynAlIaUUpRoFUvlaBZHQJlv1lkH2RJ1fZQoaAZoCWgPQwj0F3rE6JlXQJSGlFKUaBVN6ANoFkdAmXvvRRdhRnV9lChoBmgJaA9DCNS2YRQEW2tAlIaUUpRoFU2pA2gWR0CZfkBfKISEdX2UKGgGaAloD0MIMGKfAIqhX0CUhpRSlGgVTegDaBZHQJmDebkOqed1fZQoaAZoCWgPQwgYzjXM0PdfQJSGlFKUaBVN6ANoFkdAmYVtUsFt9HV9lChoBmgJaA9DCApLPKBsCvK/lIaUUpRoFUv5aBZHQJmPH/T9bX91fZQoaAZoCWgPQwglXTP5Zu9gQJSGlFKUaBVN6ANoFkdAmZUhxkupTHV9lChoBmgJaA9DCHtntFXJPGNAlIaUUpRoFU3oA2gWR0CZlnIF/x2CdX2UKGgGaAloD0MI0GOUZ17WXECUhpRSlGgVTegDaBZHQJmZlfPX05F1fZQoaAZoCWgPQwg26Etv/+NgQJSGlFKUaBVN6ANoFkdAmZqsm4RVZXV9lChoBmgJaA9DCEyln3B2awjAlIaUUpRoFU0rAWgWR0CZnDkjHGS7dX2UKGgGaAloD0MI1LX2PlWXVECUhpRSlGgVTegDaBZHQJmdijKxLTR1fZQoaAZoCWgPQwiJmBJJdJBiQJSGlFKUaBVN6ANoFkdAmZ6Kp97Wu3V9lChoBmgJaA9DCE94CU79xGFAlIaUUpRoFU3oA2gWR0CZnuk/r0J4dX2UKGgGaAloD0MI4qyImuieYUCUhpRSlGgVTegDaBZHQJmi4G0NSZV1fZQoaAZoCWgPQwiufmySH3H9P5SGlFKUaBVL4WgWR0CZo7P7vXsgdX2UKGgGaAloD0MIjlcgelLRXkCUhpRSlGgVTegDaBZHQJmndAWznih1fZQoaAZoCWgPQwiezhWlhDRlQJSGlFKUaBVN6ANoFkdAma6rk0aZQnV9lChoBmgJaA9DCDUomgewKAdAlIaUUpRoFU1AAWgWR0CZs8Ogg5imdX2UKGgGaAloD0MIqP3WTpS0EcCUhpRSlGgVTUEBaBZHQJm0WevpyIZ1fZQoaAZoCWgPQwgEqn8QyTAywJSGlFKUaBVNHgFoFkdAmbcMeCCjDnV9lChoBmgJaA9DCMcpOpLLx2BAlIaUUpRoFU3oA2gWR0CZuMwKSgXedX2UKGgGaAloD0MImPc40wTWakCUhpRSlGgVTZUBaBZHQJm5HPhQ3xZ1fZQoaAZoCWgPQwhDOdGuQp9bQJSGlFKUaBVN6ANoFkdAmbmG0JF9a3V9lChoBmgJaA9DCMk+yLJgAiHAlIaUUpRoFU01AWgWR0CZ4fJm/WUbdX2UKGgGaAloD0MIMZi/QmYQakCUhpRSlGgVTZwBaBZHQJniDDl5nlJ1fZQoaAZoCWgPQwiqY5XSs/hvQJSGlFKUaBVNhQJoFkdAmeJyUX531XV9lChoBmgJaA9DCNMyUu+pQl9AlIaUUpRoFU3oA2gWR0CZ4qkcCHRDdX2UKGgGaAloD0MI9DKK5RYTYUCUhpRSlGgVTegDaBZHQJnnEfU4JeF1fZQoaAZoCWgPQwi0d0ZblbpMQJSGlFKUaBVN6ANoFkdAmfNF2/zreXV9lChoBmgJaA9DCDEHQUerSiFAlIaUUpRoFUv8aBZHQJn1Kv8qFyt1fZQoaAZoCWgPQwjDEDl9vR9gQJSGlFKUaBVN6ANoFkdAmfqvTLGJenV9lChoBmgJaA9DCOilYmNeUFxAlIaUUpRoFU3oA2gWR0CZ/20UXYUWdX2UKGgGaAloD0MI9iaG5GT5XECUhpRSlGgVTegDaBZHQJoBVgTh5xB1fZQoaAZoCWgPQwgKTRJLStViQJSGlFKUaBVN6ANoFkdAmgu2ax5cDHV9lChoBmgJaA9DCGUAqOLGgV5AlIaUUpRoFU3oA2gWR0CaIWRKYiPidX2UKGgGaAloD0MISZ9W0Z/lYECUhpRSlGgVTegDaBZHQJoiFDzAeq91fZQoaAZoCWgPQwhqT8k5MZZgQJSGlFKUaBVN6ANoFkdAmiVwM6RyO3V9lChoBmgJaA9DCIZzDTO0a2BAlIaUUpRoFU3oA2gWR0CaJ22Bas6rdX2UKGgGaAloD0MI8NsQ4zUNYECUhpRSlGgVTegDaBZHQJonxlFtsN51fZQoaAZoCWgPQwgY7IZtC7NiQJSGlFKUaBVN6ANoFkdAmigxakhzNnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:92eb08ac3c90f79b73b9ffa68fa8062f8d38dff35d3a2f8af06ede2e9f6ac1da
3
- size 244367
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d2a4e39318dc91c4ffdc52628a3d37aaa7c9020f04e6a0eff8acc1a995b6aeb
3
+ size 206423
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 154.50068752791543, "std_reward": 82.62974274842004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T14:19:20.518941"}
 
1
+ {"mean_reward": 124.29756459595394, "std_reward": 74.63028204113053, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T15:03:09.077129"}