|
from transformers import GPT2LMHeadModel |
|
|
|
class ConditionalGPT2LMHeadModel(GPT2LMHeadModel): |
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
|
|
|
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs['encoder_hidden_states'] = kwargs.get('encoder_hidden_states', None) |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
) |
|
return model_inputs |