emrecan commited on
Commit
571fb44
1 Parent(s): 1f0ff20

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: dbmdz_convbert-base-turkish-mc4-cased_allnli_tr
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # dbmdz_convbert-base-turkish-mc4-cased_allnli_tr
16
+
17
+ This model is a fine-tuned version of [dbmdz/convbert-base-turkish-mc4-cased](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-cased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5541
20
+ - Accuracy: 0.8111
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 3
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
51
+ | 0.7338 | 0.03 | 1000 | 0.6722 | 0.7236 |
52
+ | 0.603 | 0.07 | 2000 | 0.6465 | 0.7399 |
53
+ | 0.5605 | 0.1 | 3000 | 0.5801 | 0.7728 |
54
+ | 0.55 | 0.14 | 4000 | 0.5994 | 0.7626 |
55
+ | 0.529 | 0.17 | 5000 | 0.5720 | 0.7697 |
56
+ | 0.5196 | 0.2 | 6000 | 0.5692 | 0.7769 |
57
+ | 0.5117 | 0.24 | 7000 | 0.5725 | 0.7785 |
58
+ | 0.5044 | 0.27 | 8000 | 0.5532 | 0.7787 |
59
+ | 0.5016 | 0.31 | 9000 | 0.5546 | 0.7812 |
60
+ | 0.5031 | 0.34 | 10000 | 0.5461 | 0.7870 |
61
+ | 0.4949 | 0.37 | 11000 | 0.5725 | 0.7826 |
62
+ | 0.4894 | 0.41 | 12000 | 0.5419 | 0.7933 |
63
+ | 0.4796 | 0.44 | 13000 | 0.5278 | 0.7914 |
64
+ | 0.4795 | 0.48 | 14000 | 0.5193 | 0.7953 |
65
+ | 0.4713 | 0.51 | 15000 | 0.5534 | 0.7771 |
66
+ | 0.4738 | 0.54 | 16000 | 0.5098 | 0.8039 |
67
+ | 0.481 | 0.58 | 17000 | 0.5244 | 0.7958 |
68
+ | 0.4634 | 0.61 | 18000 | 0.5215 | 0.7972 |
69
+ | 0.465 | 0.65 | 19000 | 0.5129 | 0.7985 |
70
+ | 0.4624 | 0.68 | 20000 | 0.5062 | 0.8047 |
71
+ | 0.4597 | 0.71 | 21000 | 0.5114 | 0.8029 |
72
+ | 0.4571 | 0.75 | 22000 | 0.5070 | 0.8073 |
73
+ | 0.4602 | 0.78 | 23000 | 0.5115 | 0.7993 |
74
+ | 0.4552 | 0.82 | 24000 | 0.5085 | 0.8052 |
75
+ | 0.4538 | 0.85 | 25000 | 0.5118 | 0.7974 |
76
+ | 0.4517 | 0.88 | 26000 | 0.5036 | 0.8044 |
77
+ | 0.4517 | 0.92 | 27000 | 0.4930 | 0.8062 |
78
+ | 0.4413 | 0.95 | 28000 | 0.5307 | 0.7964 |
79
+ | 0.4483 | 0.99 | 29000 | 0.5195 | 0.7938 |
80
+ | 0.4036 | 1.02 | 30000 | 0.5238 | 0.8029 |
81
+ | 0.3724 | 1.05 | 31000 | 0.5125 | 0.8082 |
82
+ | 0.3777 | 1.09 | 32000 | 0.5099 | 0.8075 |
83
+ | 0.3753 | 1.12 | 33000 | 0.5172 | 0.8053 |
84
+ | 0.367 | 1.15 | 34000 | 0.5188 | 0.8053 |
85
+ | 0.3819 | 1.19 | 35000 | 0.5218 | 0.8046 |
86
+ | 0.363 | 1.22 | 36000 | 0.5202 | 0.7993 |
87
+ | 0.3794 | 1.26 | 37000 | 0.5240 | 0.8048 |
88
+ | 0.3749 | 1.29 | 38000 | 0.5026 | 0.8054 |
89
+ | 0.367 | 1.32 | 39000 | 0.5198 | 0.8075 |
90
+ | 0.3759 | 1.36 | 40000 | 0.5298 | 0.7993 |
91
+ | 0.3701 | 1.39 | 41000 | 0.5072 | 0.8091 |
92
+ | 0.3742 | 1.43 | 42000 | 0.5071 | 0.8098 |
93
+ | 0.3706 | 1.46 | 43000 | 0.5317 | 0.8037 |
94
+ | 0.3716 | 1.49 | 44000 | 0.5034 | 0.8052 |
95
+ | 0.3717 | 1.53 | 45000 | 0.5258 | 0.8012 |
96
+ | 0.3714 | 1.56 | 46000 | 0.5195 | 0.8050 |
97
+ | 0.3781 | 1.6 | 47000 | 0.5004 | 0.8104 |
98
+ | 0.3725 | 1.63 | 48000 | 0.5124 | 0.8113 |
99
+ | 0.3624 | 1.66 | 49000 | 0.5040 | 0.8094 |
100
+ | 0.3657 | 1.7 | 50000 | 0.4979 | 0.8111 |
101
+ | 0.3669 | 1.73 | 51000 | 0.4968 | 0.8100 |
102
+ | 0.3636 | 1.77 | 52000 | 0.5075 | 0.8079 |
103
+ | 0.36 | 1.8 | 53000 | 0.4985 | 0.8110 |
104
+ | 0.3624 | 1.83 | 54000 | 0.5125 | 0.8070 |
105
+ | 0.366 | 1.87 | 55000 | 0.4918 | 0.8117 |
106
+ | 0.3655 | 1.9 | 56000 | 0.5051 | 0.8109 |
107
+ | 0.3609 | 1.94 | 57000 | 0.5083 | 0.8105 |
108
+ | 0.3672 | 1.97 | 58000 | 0.5129 | 0.8085 |
109
+ | 0.3545 | 2.0 | 59000 | 0.5467 | 0.8109 |
110
+ | 0.2938 | 2.04 | 60000 | 0.5635 | 0.8049 |
111
+ | 0.29 | 2.07 | 61000 | 0.5781 | 0.8041 |
112
+ | 0.2992 | 2.11 | 62000 | 0.5470 | 0.8077 |
113
+ | 0.2957 | 2.14 | 63000 | 0.5765 | 0.8073 |
114
+ | 0.292 | 2.17 | 64000 | 0.5472 | 0.8106 |
115
+ | 0.2893 | 2.21 | 65000 | 0.5590 | 0.8085 |
116
+ | 0.2883 | 2.24 | 66000 | 0.5535 | 0.8064 |
117
+ | 0.2923 | 2.28 | 67000 | 0.5508 | 0.8095 |
118
+ | 0.2868 | 2.31 | 68000 | 0.5679 | 0.8098 |
119
+ | 0.2892 | 2.34 | 69000 | 0.5660 | 0.8057 |
120
+ | 0.292 | 2.38 | 70000 | 0.5494 | 0.8088 |
121
+ | 0.286 | 2.41 | 71000 | 0.5653 | 0.8085 |
122
+ | 0.2939 | 2.45 | 72000 | 0.5673 | 0.8070 |
123
+ | 0.286 | 2.48 | 73000 | 0.5600 | 0.8092 |
124
+ | 0.2844 | 2.51 | 74000 | 0.5508 | 0.8095 |
125
+ | 0.2913 | 2.55 | 75000 | 0.5645 | 0.8088 |
126
+ | 0.2859 | 2.58 | 76000 | 0.5677 | 0.8095 |
127
+ | 0.2892 | 2.62 | 77000 | 0.5598 | 0.8113 |
128
+ | 0.2898 | 2.65 | 78000 | 0.5618 | 0.8096 |
129
+ | 0.2814 | 2.68 | 79000 | 0.5664 | 0.8103 |
130
+ | 0.2917 | 2.72 | 80000 | 0.5484 | 0.8122 |
131
+ | 0.2907 | 2.75 | 81000 | 0.5522 | 0.8116 |
132
+ | 0.2896 | 2.79 | 82000 | 0.5540 | 0.8093 |
133
+ | 0.2907 | 2.82 | 83000 | 0.5469 | 0.8104 |
134
+ | 0.2882 | 2.85 | 84000 | 0.5471 | 0.8122 |
135
+ | 0.2878 | 2.89 | 85000 | 0.5532 | 0.8108 |
136
+ | 0.2858 | 2.92 | 86000 | 0.5511 | 0.8115 |
137
+ | 0.288 | 2.96 | 87000 | 0.5491 | 0.8111 |
138
+ | 0.2834 | 2.99 | 88000 | 0.5541 | 0.8111 |
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - Transformers 4.12.3
144
+ - Pytorch 1.10.0+cu102
145
+ - Datasets 1.15.1
146
+ - Tokenizers 0.10.3