File size: 1,975 Bytes
535e127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- f1
- recall
model-index:
- name: PAN-2024-transformer-base_bert-base-spanish-wwm-cased_K2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PAN-2024-transformer-base_bert-base-spanish-wwm-cased_K2
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6218
- F1 Macro: 0.3333
- F1: 0.6667
- F1 Neg: 0.0
- Acc: 0.5
- Prec: 0.5
- Recall: 1.0
- Mcc: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 | F1 Neg | Acc | Prec | Recall | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---:|:----:|:------:|:---:|
| No log | 1.0 | 1 | 0.6218 | 0.3333 | 0.6667 | 0.0 | 0.5 | 0.5 | 1.0 | 0.0 |
| No log | 2.0 | 2 | 0.6680 | 0.3333 | 0.6667 | 0.0 | 0.5 | 0.5 | 1.0 | 0.0 |
| No log | 3.0 | 3 | 0.6844 | 0.3333 | 0.6667 | 0.0 | 0.5 | 0.5 | 1.0 | 0.0 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
|