--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-NER results: [] --- # distilbert-NER This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0710 - Precision: 0.9202 - Recall: 0.9232 - F1: 0.9217 - Accuracy: 0.9810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2748 | 1.0 | 878 | 0.0959 | 0.8886 | 0.8976 | 0.8931 | 0.9739 | | 0.0635 | 2.0 | 1756 | 0.0721 | 0.9199 | 0.9228 | 0.9213 | 0.9805 | | 0.0411 | 3.0 | 2634 | 0.0710 | 0.9202 | 0.9232 | 0.9217 | 0.9810 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1