File size: 6,558 Bytes
cf3c40e f7c2808 f5581ac cf3c40e d1a3e8f 3453501 cf3c40e 6bfbb0e f68542a 6bfbb0e 39c3870 5271995 39c3870 8299efe 6bfbb0e cf3c40e cc477cd cf3c40e 0675036 cf3c40e cc477cd cf3c40e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
language: en
datasets:
- conll2003
license: mit
model-index:
- name: dslim/bert-base-NER
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9118041001560013
verified: true
- name: Precision
type: precision
value: 0.9211550382257732
verified: true
- name: Recall
type: recall
value: 0.9306415698281261
verified: true
- name: F1
type: f1
value: 0.9258740048459675
verified: true
- name: loss
type: loss
value: 0.48325642943382263
verified: true
---
# bert-base-NER
If my open source models have been useful to you, please consider supporting me in building small, useful AI models for everyone (and help me afford med school / help out my parents financially). Thanks!
<a href="https://www.buymeacoffee.com/dslim" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/arial-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>
## Model description
**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a [**bert-large-NER**](https://huggingface.co/dslim/bert-large-NER/) version is also available.
### Available NER models
| Model Name | Description | Parameters |
|-------------------|-------------|------------------|
| [distilbert-NER](https://huggingface.co/dslim/distilbert-NER) **(NEW!)** | Fine-tuned DistilBERT - a smaller, faster, lighter version of BERT | 66M |
| [bert-large-NER](https://huggingface.co/dslim/bert-large-NER/) | Fine-tuned bert-large-cased - larger model with slightly better performance | 340M |
| [bert-base-NER](https://huggingface.co/dslim/bert-base-NER)-([uncased](https://huggingface.co/dslim/bert-base-NER-uncased)) | Fine-tuned bert-base, available in both cased and uncased versions | 110M |
## Intended uses & limitations
#### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"
ner_results = nlp(example)
print(ner_results)
```
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
## Training data
This model was fine-tuned on English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes:
Abbreviation|Description
-|-
O|Outside of a named entity
B-MISC |Beginning of a miscellaneous entity right after another miscellaneous entity
I-MISC | Miscellaneous entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organization right after another organization
I-ORG |organization
B-LOC |Beginning of a location right after another location
I-LOC |Location
### CoNLL-2003 English Dataset Statistics
This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper.
#### # of training examples per entity type
Dataset|LOC|MISC|ORG|PER
-|-|-|-|-
Train|7140|3438|6321|6600
Dev|1837|922|1341|1842
Test|1668|702|1661|1617
#### # of articles/sentences/tokens per dataset
Dataset |Articles |Sentences |Tokens
-|-|-|-
Train |946 |14,987 |203,621
Dev |216 |3,466 |51,362
Test |231 |3,684 |46,435
## Training procedure
This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805) which trained & evaluated the model on CoNLL-2003 NER task.
## Eval results
metric|dev|test
-|-|-
f1 |95.1 |91.3
precision |95.0 |90.7
recall |95.3 |91.9
The test metrics are a little lower than the official Google BERT results which encoded document context & experimented with CRF. More on replicating the original results [here](https://github.com/google-research/bert/issues/223).
### BibTeX entry and citation info
```
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
author = "Tjong Kim Sang, Erik F. and
De Meulder, Fien",
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
year = "2003",
url = "https://www.aclweb.org/anthology/W03-0419",
pages = "142--147",
}
```
|