File size: 6,276 Bytes
b8e25eb 6818035 b8e25eb 1c0c6e6 b8e25eb 4ec0637 b8e25eb 4ec0637 b8e25eb 4ec0637 b8e25eb e0ac1cb bdee308 b8e25eb 4ec0637 b8e25eb 5acb7ff b8e25eb e0ac1cb 4ec0637 e0ac1cb b8e25eb 4ec0637 b8e25eb 4ec0637 b8e25eb 4ec0637 b8e25eb 4ec0637 b8e25eb 4ec0637 b8e25eb 1c0c6e6 b8e59f8 1c0c6e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
language: vi
datasets:
- vivos
- common_voice
metrics:
- wer
pipeline_tag: automatic-speech-recognition
tags:
- audio
- speech
- speechbrain
- Transformer
license: cc-by-nc-4.0
widget:
- example_title: Example 1
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example.mp3
- example_title: Example 2
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example2.mp3
model-index:
- name: Wav2vec2 Base Vietnamese 270h
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice vi
type: common_voice
args: vi
metrics:
- name: Test WER
type: wer
value: 9.66
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: vi
metrics:
- name: Test WER
type: wer
value: 5.57
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: vi
metrics:
- name: Test WER
type: wer
value: 5.76
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: VIVOS
type: vivos
args: vi
metrics:
- name: Test WER
type: wer
value: 3.70
---
# Wav2Vec2-Base-Vietnamese-270h
Fine-tuned Wav2Vec2 model on Vietnamese Speech Recognition task using about 270h labelled data combined from multiple datasets including [Common Voice](https://huggingface.co/datasets/common_voice), [VIVOS](https://huggingface.co/datasets/vivos), [VLSP2020](https://vlsp.org.vn/vlsp2020/eval/asr). The model was fine-tuned using SpeechBrain toolkit with a custom tokenizer. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io/).
When using this model, make sure that your speech input is sampled at 16kHz.
Please refer to [huggingface blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) or [speechbrain](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) on how to fine-tune Wav2Vec2 model on a specific language.
### Benchmark WER result:
| | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|---|---|---|---|
|without LM| 8.23 | 12.15 | 12.15 |
|with 4-grams LM| 3.70 | 5.57 | 5.76 |
The language model was trained using [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset on about 32GB of crawled text.
### Install SpeechBrain
To use this model, you should install speechbrain > 0.5.10
### Usage
The model can be used directly (without a language model) as follows:
```python
from speechbrain.pretrained import EncoderASR
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi")
model.transcribe_file('dragonSwing/wav2vec2-base-vn-270h/example.mp3')
# Output: được hồ chí minh coi là một động lực lớn của sự phát triển đất nước
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Evaluation
The model can be evaluated as follows on the Vietnamese test data of Common Voice 8.0.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric, Audio
from transformers import Wav2Vec2FeatureExtractor
from speechbrain.pretrained import EncoderASR
import re
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test", use_auth_token=True)
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wer = load_metric("wer")
extractor = Wav2Vec2FeatureExtractor.from_pretrained("dragonSwing/wav2vec2-base-vn-270h")
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi", run_opts={'device': device})
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
audio = batch["audio"]
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
batch['speech'] = audio['array']
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
# For padding inputs only
inputs = extractor(
batch['speech'],
sampling_rate=16000,
return_tensors="pt",
padding=True,
do_normalize=False
).input_values
input_lens = torch.ones(inputs.shape[0])
pred_str, pred_tokens = model.transcribe_batch(inputs, input_lens)
batch["pred_strings"] = pred_str
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=1)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"])))
```
**Test Result**: 12.155553%
#### Citation
```
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: [https://speechbrain.github.io](https://speechbrain.github.io/)
GitHub: [https://github.com/speechbrain/speechbrain](https://github.com/speechbrain/speechbrain) |