import torch import torch.nn as nn import numpy as np from transformers import (RobertaConfig, RobertaModel, RobertaTokenizer, BartConfig, BartForConditionalGeneration, BartTokenizer, T5Config, T5ForConditionalGeneration, T5Tokenizer) import logging logger = logging.getLogger(__name__) MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), 't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer), 'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer), 'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)} def get_model_size(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) model_size = sum([np.prod(p.size()) for p in model_parameters]) return "{}M".format(round(model_size / 1e+6)) def build_or_load_gen_model(args): config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name) if args.model_type == 'roberta': encoder = model_class.from_pretrained(args.model_name_or_path, config=config) decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) model = Seq2Seq(encoder=encoder, decoder=decoder, config=config, beam_size=args.beam_size, max_length=args.max_target_length, sos_id=tokenizer.cls_token_id, eos_id=tokenizer.sep_token_id) else: model = model_class.from_pretrained(args.model_name_or_path) logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path) if args.load_model_path is not None: logger.info("Reload model from {}".format(args.load_model_path)) model.load_state_dict(torch.load(args.load_model_path)) return config, model, tokenizer class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size) self.out_proj = nn.Linear(config.hidden_size, 2) def forward(self, x, **kwargs): x = x.reshape(-1, x.size(-1) * 2) x = self.dense(x) x = torch.tanh(x) x = self.out_proj(x) return x class CloneModel(nn.Module): def __init__(self, encoder, config, tokenizer, args): super(CloneModel, self).__init__() self.encoder = encoder self.config = config self.tokenizer = tokenizer self.classifier = RobertaClassificationHead(config) self.args = args def get_t5_vec(self, source_ids): attention_mask = source_ids.ne(self.tokenizer.pad_token_id) outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) hidden_states = outputs['decoder_hidden_states'][-1] eos_mask = source_ids.eq(self.config.eos_token_id) if len(torch.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of tokens.") vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[:, -1, :] return vec def get_bart_vec(self, source_ids): attention_mask = source_ids.ne(self.tokenizer.pad_token_id) outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) hidden_states = outputs['decoder_hidden_states'][-1] eos_mask = source_ids.eq(self.config.eos_token_id) if len(torch.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of tokens.") vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[:, -1, :] return vec def get_roberta_vec(self, source_ids): attention_mask = source_ids.ne(self.tokenizer.pad_token_id) vec = self.encoder(input_ids=source_ids, attention_mask=attention_mask)[0][:, 0, :] return vec def forward(self, source_ids=None, labels=None): source_ids = source_ids.view(-1, self.args.max_source_length) if self.args.model_type == 'codet5': vec = self.get_t5_vec(source_ids) elif self.args.model_type == 'bart': vec = self.get_bart_vec(source_ids) elif self.args.model_type == 'roberta': vec = self.get_roberta_vec(source_ids) logits = self.classifier(vec) prob = nn.functional.softmax(logits) if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits, labels) return loss, prob else: return prob class DefectModel(nn.Module): def __init__(self, encoder, config, tokenizer, args): super(DefectModel, self).__init__() self.encoder = encoder self.config = config self.tokenizer = tokenizer self.classifier = nn.Linear(config.hidden_size, 2) self.args = args def get_t5_vec(self, source_ids): attention_mask = source_ids.ne(self.tokenizer.pad_token_id) outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) hidden_states = outputs['decoder_hidden_states'][-1] eos_mask = source_ids.eq(self.config.eos_token_id) if len(torch.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of tokens.") vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[:, -1, :] return vec def get_bart_vec(self, source_ids): attention_mask = source_ids.ne(self.tokenizer.pad_token_id) outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) hidden_states = outputs['decoder_hidden_states'][-1] eos_mask = source_ids.eq(self.config.eos_token_id) if len(torch.unique(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of tokens.") vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[:, -1, :] return vec def get_roberta_vec(self, source_ids): attention_mask = source_ids.ne(self.tokenizer.pad_token_id) vec = self.encoder(input_ids=source_ids, attention_mask=attention_mask)[0][:, 0, :] return vec def forward(self, source_ids=None, labels=None): source_ids = source_ids.view(-1, self.args.max_source_length) if self.args.model_type == 'codet5': vec = self.get_t5_vec(source_ids) elif self.args.model_type == 'bart': vec = self.get_bart_vec(source_ids) elif self.args.model_type == 'roberta': vec = self.get_roberta_vec(source_ids) logits = self.classifier(vec) prob = nn.functional.softmax(logits) if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits, labels) return loss, prob else: return prob # https://github.com/microsoft/CodeBERT/blob/master/CodeBERT/code2nl/model.py class Seq2Seq(nn.Module): """ Build Seqence-to-Sequence. Parameters: * `encoder`- encoder of seq2seq model. e.g. roberta * `decoder`- decoder of seq2seq model. e.g. transformer * `config`- configuration of encoder model. * `beam_size`- beam size for beam search. * `max_length`- max length of target for beam search. * `sos_id`- start of symbol ids in target for beam search. * `eos_id`- end of symbol ids in target for beam search. """ def __init__(self, encoder, decoder, config, beam_size=None, max_length=None, sos_id=None, eos_id=None): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder self.config = config self.register_buffer("bias", torch.tril(torch.ones(2048, 2048))) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lsm = nn.LogSoftmax(dim=-1) self.tie_weights() self.beam_size = beam_size self.max_length = max_length self.sos_id = sos_id self.eos_id = eos_id def _tie_or_clone_weights(self, first_module, second_module): """ Tie or clone module weights depending of weither we are using TorchScript or not """ if self.config.torchscript: first_module.weight = nn.Parameter(second_module.weight.clone()) else: first_module.weight = second_module.weight def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.encoder.embeddings.word_embeddings) def forward(self, source_ids=None, source_mask=None, target_ids=None, target_mask=None, args=None): outputs = self.encoder(source_ids, attention_mask=source_mask) encoder_output = outputs[0].permute([1, 0, 2]).contiguous() if target_ids is not None: attn_mask = -1e4 * (1 - self.bias[:target_ids.shape[1], :target_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(target_ids).permute([1, 0, 2]).contiguous() out = self.decoder(tgt_embeddings, encoder_output, tgt_mask=attn_mask, memory_key_padding_mask=~source_mask) # memory_key_padding_mask=(1 - source_mask).bool()) hidden_states = torch.tanh(self.dense(out)).permute([1, 0, 2]).contiguous() lm_logits = self.lm_head(hidden_states) # Shift so that tokens < n predict n active_loss = target_mask[..., 1:].ne(0).view(-1) == 1 shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = target_ids[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], shift_labels.view(-1)[active_loss]) outputs = loss, loss * active_loss.sum(), active_loss.sum() return outputs else: # Predict preds = [] zero = torch.cuda.LongTensor(1).fill_(0) for i in range(source_ids.shape[0]): context = encoder_output[:, i:i + 1] context_mask = source_mask[i:i + 1, :] beam = Beam(self.beam_size, self.sos_id, self.eos_id) input_ids = beam.getCurrentState() context = context.repeat(1, self.beam_size, 1) context_mask = context_mask.repeat(self.beam_size, 1) for _ in range(self.max_length): if beam.done(): break attn_mask = -1e4 * (1 - self.bias[:input_ids.shape[1], :input_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(input_ids).permute([1, 0, 2]).contiguous() out = self.decoder(tgt_embeddings, context, tgt_mask=attn_mask, memory_key_padding_mask=~context_mask) # memory_key_padding_mask=(1 - context_mask).bool()) out = torch.tanh(self.dense(out)) hidden_states = out.permute([1, 0, 2]).contiguous()[:, -1, :] out = self.lsm(self.lm_head(hidden_states)).data beam.advance(out) input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) input_ids = torch.cat((input_ids, beam.getCurrentState()), -1) hyp = beam.getHyp(beam.getFinal()) pred = beam.buildTargetTokens(hyp)[:self.beam_size] pred = [torch.cat([x.view(-1) for x in p] + [zero] * (self.max_length - len(p))).view(1, -1) for p in pred] preds.append(torch.cat(pred, 0).unsqueeze(0)) preds = torch.cat(preds, 0) return preds class Beam(object): def __init__(self, size, sos, eos): self.size = size self.tt = torch.cuda # The score for each translation on the beam. self.scores = self.tt.FloatTensor(size).zero_() # The backpointers at each time-step. self.prevKs = [] # The outputs at each time-step. self.nextYs = [self.tt.LongTensor(size) .fill_(0)] self.nextYs[0][0] = sos # Has EOS topped the beam yet. self._eos = eos self.eosTop = False # Time and k pair for finished. self.finished = [] def getCurrentState(self): "Get the outputs for the current timestep." batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) return batch def getCurrentOrigin(self): "Get the backpointers for the current timestep." return self.prevKs[-1] def advance(self, wordLk): """ Given prob over words for every last beam `wordLk` and attention `attnOut`: Compute and update the beam search. Parameters: * `wordLk`- probs of advancing from the last step (K x words) * `attnOut`- attention at the last step Returns: True if beam search is complete. """ numWords = wordLk.size(1) # Sum the previous scores. if len(self.prevKs) > 0: beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) # Don't let EOS have children. for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: beamLk[i] = -1e20 else: beamLk = wordLk[0] flatBeamLk = beamLk.view(-1) bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) self.scores = bestScores # bestScoresId is flattened beam x word array, so calculate which # word and beam each score came from prevK = bestScoresId // numWords self.prevKs.append(prevK) self.nextYs.append((bestScoresId - prevK * numWords)) for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: s = self.scores[i] self.finished.append((s, len(self.nextYs) - 1, i)) # End condition is when top-of-beam is EOS and no global score. if self.nextYs[-1][0] == self._eos: self.eosTop = True def done(self): return self.eosTop and len(self.finished) >= self.size def getFinal(self): if len(self.finished) == 0: self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) self.finished.sort(key=lambda a: -a[0]) if len(self.finished) != self.size: unfinished = [] for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] != self._eos: s = self.scores[i] unfinished.append((s, len(self.nextYs) - 1, i)) unfinished.sort(key=lambda a: -a[0]) self.finished += unfinished[:self.size - len(self.finished)] return self.finished[:self.size] def getHyp(self, beam_res): """ Walk back to construct the full hypothesis. """ hyps = [] for _, timestep, k in beam_res: hyp = [] for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): hyp.append(self.nextYs[j + 1][k]) k = self.prevKs[j][k] hyps.append(hyp[::-1]) return hyps def buildTargetTokens(self, preds): sentence = [] for pred in preds: tokens = [] for tok in pred: if tok == self._eos: break tokens.append(tok) sentence.append(tokens) return sentence