Transformers.js documentation

utils/generation

You are viewing main version, which requires installation from source. If you'd like regular npm install, checkout the latest stable version (v3.0.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

utils/generation

Classes, functions, and utilities for generation.

Todo

  • Describe how to create a custom GenerationConfig.

utils/generation.LogitsProcessorList ⇐ <code> Callable </code>

A class representing a list of logits processors. A logits processor is a function that modifies the logits output of a language model. This class provides methods for adding new processors and applying all processors to a batch of logits.

Kind: static class of utils/generation
Extends: Callable


new LogitsProcessorList()

Constructs a new instance of LogitsProcessorList.


logitsProcessorList.push(item)

Adds a new logits processor to the list.

Kind: instance method of LogitsProcessorList

ParamTypeDescription
itemLogitsProcessor

The logits processor function to add.


logitsProcessorList.extend(items)

Adds multiple logits processors to the list.

Kind: instance method of LogitsProcessorList

ParamTypeDescription
itemsArray.<LogitsProcessor>

The logits processor functions to add.


logitsProcessorList._call(input_ids, batchedLogits)

Applies all logits processors in the list to a batch of logits, modifying them in-place.

Kind: instance method of LogitsProcessorList

ParamTypeDescription
input_idsArray.<number>

The input IDs for the language model.

batchedLogitsArray.<Array<number>>

A 2D array of logits, where each row corresponds to a single input sequence in the batch.


utils/generation.LogitsProcessor ⇐ <code> Callable </code>

Base class for processing logits.

Kind: static class of utils/generation
Extends: Callable


logitsProcessor._call(input_ids, logits)

Apply the processor to the input logits.

Kind: instance abstract method of LogitsProcessor
Throws:

  • Error Throws an error if `_call` is not implemented in the subclass.
ParamTypeDescription
input_idsArray

The input ids.

logitsTensor

The logits to process.


utils/generation.ForceTokensLogitsProcessor ⇐ <code> LogitsProcessor </code>

A logits processor that forces a specific token to be generated by the decoder.

Kind: static class of utils/generation
Extends: LogitsProcessor


new ForceTokensLogitsProcessor(forced_decoder_ids)

Constructs a new instance of ForceTokensLogitsProcessor.

ParamTypeDescription
forced_decoder_idsArray

The ids of tokens that should be forced.


forceTokensLogitsProcessor._call(input_ids, logits) β‡’ <code> Tensor </code>

Apply the processor to the input logits.

Kind: instance method of ForceTokensLogitsProcessor
Returns: Tensor - The processed logits.

ParamTypeDescription
input_idsArray

The input ids.

logitsTensor

The logits to process.


utils/generation.ForcedBOSTokenLogitsProcessor ⇐ <code> LogitsProcessor </code>

A LogitsProcessor that forces a BOS token at the beginning of the generated sequence.

Kind: static class of utils/generation
Extends: LogitsProcessor


new ForcedBOSTokenLogitsProcessor(bos_token_id)

Create a ForcedBOSTokenLogitsProcessor.

ParamTypeDescription
bos_token_idnumber

The ID of the beginning-of-sequence token to be forced.


forcedBOSTokenLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply the BOS token forcing to the logits.

Kind: instance method of ForcedBOSTokenLogitsProcessor
Returns: Object - The logits with BOS token forcing.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.ForcedEOSTokenLogitsProcessor ⇐ <code> LogitsProcessor </code>

A logits processor that forces end-of-sequence token probability to 1.

Kind: static class of utils/generation
Extends: LogitsProcessor


new ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)

Create a ForcedEOSTokenLogitsProcessor.

ParamTypeDescription
max_lengthnumber

Max length of the sequence.

forced_eos_token_idnumber | Array<number>

The ID of the end-of-sequence token to be forced.


forcedEOSTokenLogitsProcessor._call(input_ids, logits)

Apply the processor to input_ids and logits.

Kind: instance method of ForcedEOSTokenLogitsProcessor

ParamTypeDescription
input_idsArray.<number>

The input ids.

logitsTensor

The logits tensor.


utils/generation.SuppressTokensAtBeginLogitsProcessor ⇐ <code> LogitsProcessor </code>

A LogitsProcessor that suppresses a list of tokens as soon as the generate function starts generating using begin_index tokens. This should ensure that the tokens defined by begin_suppress_tokens at not sampled at the begining of the generation.

Kind: static class of utils/generation
Extends: LogitsProcessor


new SuppressTokensAtBeginLogitsProcessor(begin_suppress_tokens, begin_index)

Create a SuppressTokensAtBeginLogitsProcessor.

ParamTypeDescription
begin_suppress_tokensArray.<number>

The IDs of the tokens to suppress.

begin_indexnumber

The number of tokens to generate before suppressing tokens.


suppressTokensAtBeginLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply the BOS token forcing to the logits.

Kind: instance method of SuppressTokensAtBeginLogitsProcessor
Returns: Object - The logits with BOS token forcing.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.WhisperTimeStampLogitsProcessor ⇐ <code> LogitsProcessor </code>

A LogitsProcessor that handles adding timestamps to generated text.

Kind: static class of utils/generation
Extends: LogitsProcessor


new WhisperTimeStampLogitsProcessor(generate_config)

Constructs a new WhisperTimeStampLogitsProcessor.

ParamTypeDescription
generate_configObject

The config object passed to the generate() method of a transformer model.

generate_config.eos_token_idnumber

The ID of the end-of-sequence token.

generate_config.no_timestamps_token_idnumber

The ID of the token used to indicate that a token should not have a timestamp.

[generate_config.forced_decoder_ids]Array.<Array<number>>

An array of two-element arrays representing decoder IDs that are forced to appear in the output. The second element of each array indicates whether the token is a timestamp.

[generate_config.max_initial_timestamp_index]number

The maximum index at which an initial timestamp can appear.


whisperTimeStampLogitsProcessor._call(input_ids, logits) β‡’ <code> Tensor </code>

Modify the logits to handle timestamp tokens.

Kind: instance method of WhisperTimeStampLogitsProcessor
Returns: Tensor - The modified logits.

ParamTypeDescription
input_idsArray

The input sequence of tokens.

logitsTensor

The logits output by the model.


utils/generation.NoRepeatNGramLogitsProcessor ⇐ <code> LogitsProcessor </code>

A logits processor that disallows ngrams of a certain size to be repeated.

Kind: static class of utils/generation
Extends: LogitsProcessor


new NoRepeatNGramLogitsProcessor(no_repeat_ngram_size)

Create a NoRepeatNGramLogitsProcessor.

ParamTypeDescription
no_repeat_ngram_sizenumber

The no-repeat-ngram size. All ngrams of this size can only occur once.


noRepeatNGramLogitsProcessor.getNgrams(prevInputIds) β‡’ <code> Map. < string, Array < number > > </code>

Generate n-grams from a sequence of token ids.

Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Map.<string, Array<number>> - Map of generated n-grams

ParamTypeDescription
prevInputIdsArray.<number>

List of previous input ids


noRepeatNGramLogitsProcessor.getGeneratedNgrams(bannedNgrams, prevInputIds) β‡’ <code> Array. < number > </code>

Generate n-grams from a sequence of token ids.

Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Array.<number> - Map of generated n-grams

ParamTypeDescription
bannedNgramsMap.<string, Array<number>>

Map of banned n-grams

prevInputIdsArray.<number>

List of previous input ids


noRepeatNGramLogitsProcessor.calcBannedNgramTokens(prevInputIds) β‡’ <code> Array. < number > </code>

Calculate banned n-gram tokens

Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Array.<number> - Map of generated n-grams

ParamTypeDescription
prevInputIdsArray.<number>

List of previous input ids


noRepeatNGramLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply the no-repeat-ngram processor to the logits.

Kind: instance method of NoRepeatNGramLogitsProcessor
Returns: Object - The logits with no-repeat-ngram processing.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.RepetitionPenaltyLogitsProcessor ⇐ <code> LogitsProcessor </code>

A logits processor that penalises repeated output tokens.

Kind: static class of utils/generation
Extends: LogitsProcessor


new RepetitionPenaltyLogitsProcessor(penalty)

Create a RepetitionPenaltyLogitsProcessor.

ParamTypeDescription
penaltynumber

The penalty to apply for repeated tokens.


repetitionPenaltyLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply the repetition penalty to the logits.

Kind: instance method of RepetitionPenaltyLogitsProcessor
Returns: Object - The logits with repetition penalty processing.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.MinLengthLogitsProcessor ⇐ <code> LogitsProcessor </code>

A logits processor that enforces a minimum number of tokens.

Kind: static class of utils/generation
Extends: LogitsProcessor


new MinLengthLogitsProcessor(min_length, eos_token_id)

Create a MinLengthLogitsProcessor.

ParamTypeDescription
min_lengthnumber

The minimum length below which the score of eos_token_id is set to negative infinity.

eos_token_idnumber | Array<number>

The ID/IDs of the end-of-sequence token.


minLengthLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply logit processor.

Kind: instance method of MinLengthLogitsProcessor
Returns: Object - The processed logits.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.MinNewTokensLengthLogitsProcessor ⇐ <code> LogitsProcessor </code>

A logits processor that enforces a minimum number of new tokens.

Kind: static class of utils/generation
Extends: LogitsProcessor


new MinNewTokensLengthLogitsProcessor(prompt_length_to_skip, min_new_tokens, eos_token_id)

Create a MinNewTokensLengthLogitsProcessor.

ParamTypeDescription
prompt_length_to_skipnumber

The input tokens length.

min_new_tokensnumber

The minimum new tokens length below which the score of eos_token_id is set to negative infinity.

eos_token_idnumber | Array<number>

The ID/IDs of the end-of-sequence token.


minNewTokensLengthLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply logit processor.

Kind: instance method of MinNewTokensLengthLogitsProcessor
Returns: Object - The processed logits.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.NoBadWordsLogitsProcessor

Kind: static class of utils/generation


new NoBadWordsLogitsProcessor(bad_words_ids, eos_token_id)

Create a NoBadWordsLogitsProcessor.

ParamTypeDescription
bad_words_idsArray.<Array<number>>

List of list of token ids that are not allowed to be generated.

eos_token_idnumber | Array<number>

The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.


noBadWordsLogitsProcessor._call(input_ids, logits) β‡’ <code> Object </code>

Apply logit processor.

Kind: instance method of NoBadWordsLogitsProcessor
Returns: Object - The processed logits.

ParamTypeDescription
input_idsArray

The input IDs.

logitsObject

The logits.


utils/generation.Sampler

Sampler is a base class for all sampling methods used for text generation.

Kind: static class of utils/generation


new Sampler(generation_config)

Creates a new Sampler object with the specified generation config.

ParamTypeDescription
generation_configGenerationConfigType

The generation config.


sampler._call(logits, index) β‡’ <code> void </code>

Executes the sampler, using the specified logits.

Kind: instance method of Sampler

ParamType
logitsTensor
indexnumber

sampler.sample(logits, index)

Abstract method for sampling the logits.

Kind: instance method of Sampler
Throws:

  • Error
ParamType
logitsTensor
indexnumber

sampler.getLogits(logits, index) β‡’ <code> Float32Array </code>

Returns the specified logits as an array, with temperature applied.

Kind: instance method of Sampler

ParamType
logitsTensor
indexnumber

sampler.randomSelect(probabilities) β‡’ <code> number </code>

Selects an item randomly based on the specified probabilities.

Kind: instance method of Sampler
Returns: number - The index of the selected item.

ParamTypeDescription
probabilitiesArray

An array of probabilities to use for selection.


Sampler.getSampler(generation_config) β‡’ <code> Sampler </code>

Returns a Sampler object based on the specified options.

Kind: static method of Sampler
Returns: Sampler - A Sampler object.

ParamTypeDescription
generation_configGenerationConfigType

An object containing options for the sampler.


utils/generation.GenerationConfig : <code> * </code>

Class that holds a configuration for a generation task.

Kind: static constant of utils/generation


utils/generation~GenerationConfig

Kind: inner class of utils/generation


new GenerationConfig(kwargs)

Create a new GenerationConfig object.

ParamType
kwargsGenerationConfigType

utils/generation~GreedySampler ⇐ <code> Sampler </code>

Class representing a Greedy Sampler.

Kind: inner class of utils/generation
Extends: Sampler


greedySampler.sample(logits, [index]) β‡’ <code> Array </code>

Sample the maximum probability of a given logits tensor.

Kind: instance method of GreedySampler
Returns: Array - An array with a single tuple, containing the index of the maximum value and a meaningless score (since this is a greedy search).

ParamTypeDefault
logitsTensor
[index]number-1

utils/generation~MultinomialSampler ⇐ <code> Sampler </code>

Class representing a MultinomialSampler.

Kind: inner class of utils/generation
Extends: Sampler


multinomialSampler.sample(logits, index) β‡’ <code> Array </code>

Sample from the logits.

Kind: instance method of MultinomialSampler

ParamType
logitsTensor
indexnumber

utils/generation~BeamSearchSampler ⇐ <code> Sampler </code>

Class representing a BeamSearchSampler.

Kind: inner class of utils/generation
Extends: Sampler


beamSearchSampler.sample(logits, index) β‡’ <code> Array </code>

Sample from the logits.

Kind: instance method of BeamSearchSampler

ParamType
logitsTensor
indexnumber

utils/generation~GenerationConfigType : <code> Object </code>

The default configuration parameters.

Kind: inner typedef of utils/generation
Properties

NameTypeDefaultDescription
[max_length]number20

The maximum length the generated tokens can have. Corresponds to the length of the input prompt + max_new_tokens. Its effect is overridden by max_new_tokens, if also set.

[max_new_tokens]number

The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt.

[min_length]number0

The minimum length of the sequence to be generated. Corresponds to the length of the input prompt + min_new_tokens. Its effect is overridden by min_new_tokens, if also set.

[min_new_tokens]number

The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt.

[early_stopping]boolean | "never"false

Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:

  • true, where the generation stops as soon as there are num_beams complete candidates;
  • false, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates;
  • "never", where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm).
[max_time]number

The maximum amount of time you allow the computation to run for in seconds. Generation will still finish the current pass after allocated time has been passed.

[do_sample]booleanfalse

Whether or not to use sampling; use greedy decoding otherwise.

[num_beams]number1

Number of beams for beam search. 1 means no beam search.

[num_beam_groups]number1

Number of groups to divide num_beams into in order to ensure diversity among different groups of beams. See this paper for more details.

[penalty_alpha]number

The values balance the model confidence and the degeneration penalty in contrastive search decoding.

[use_cache]booleantrue

Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.

[temperature]number1.0

The value used to modulate the next token probabilities.

[top_k]number50

The number of highest probability vocabulary tokens to keep for top-k-filtering.

[top_p]number1.0

If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.

[typical_p]number1.0

Local typicality measures how similar the conditional probability of predicting a target token next is to the expected conditional probability of predicting a random token next, given the partial text already generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that add up to typical_p or higher are kept for generation. See this paper for more details.

[epsilon_cutoff]number0.0

If set to float strictly between 0 and 1, only tokens with a conditional probability greater than epsilon_cutoff will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on the size of the model. See Truncation Sampling as Language Model Desmoothing for more details.

[eta_cutoff]number0.0

Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly between 0 and 1, a token is only considered if it is greater than either eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model. See Truncation Sampling as Language Model Desmoothing for more details.

[diversity_penalty]number0.0

This value is subtracted from a beam's score if it generates a token same as any beam from other group at a particular time. Note that diversity_penalty is only effective if group beam search is enabled.

[repetition_penalty]number1.0

The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.

[encoder_repetition_penalty]number1.0

The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the original input. 1.0 means no penalty.

[length_penalty]number1.0

Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences.

[no_repeat_ngram_size]number0

If set to int > 0, all ngrams of that size can only occur once.

[bad_words_ids]Array.<Array<number>>

List of token ids that are not allowed to be generated. In order to get the token ids of the words that should not appear in the generated text, use (await tokenizer(bad_words, {add_prefix_space: true, add_special_tokens: false})).input_ids.

[force_words_ids]Array<Array<number>> | Array<Array<Array<number>>>

List of token ids that must be generated. If given a number[][], this is treated as a simple list of words that must be included, the opposite to bad_words_ids. If given number[][][], this triggers a disjunctive constraint, where one can allow different forms of each word.

[renormalize_logits]booleanfalse

Whether to renormalize the logits after applying all the logits processors or warpers (including the custom ones). It's highly recommended to set this flag to true as the search algorithms suppose the score logits are normalized but some logit processors or warpers break the normalization.

[constraints]Array.<Object>

Custom constraints that can be added to the generation to ensure that the output will contain the use of certain tokens as defined by Constraint objects, in the most sensible way possible.

[forced_bos_token_id]number

The id of the token to force as the first generated token after the decoder_start_token_id. Useful for multilingual models like mBART where the first generated token needs to be the target language token.

[forced_eos_token_id]number | Array<number>

The id of the token to force as the last generated token when max_length is reached. Optionally, use a list to set multiple end-of-sequence tokens.

[remove_invalid_values]booleanfalse

Whether to remove possible nan and inf outputs of the model to prevent the generation method to crash. Note that using remove_invalid_values can slow down generation.

[exponential_decay_length_penalty]Array.<number>

This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been generated. The tuple shall consist of: (start_index, decay_factor) where start_index indicates where penalty starts and decay_factor represents the factor of exponential decay.

[suppress_tokens]Array.<number>

A list of tokens that will be suppressed at generation. The SupressTokens logit processor will set their log probs to -inf so that they are not sampled.

[begin_suppress_tokens]Array.<number>

A list of tokens that will be suppressed at the beginning of the generation. The SupressBeginTokens logit processor will set their log probs to -inf so that they are not sampled.

[forced_decoder_ids]Array.<Array<number>>

A list of pairs of integers which indicates a mapping from generation indices to token indices that will be forced before sampling. For example, [[1, 123]] means the second generated token will always be a token of index 123.

[num_return_sequences]number1

The number of independently computed returned sequences for each element in the batch.

[output_attentions]booleanfalse

Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more details.

[output_hidden_states]booleanfalse

Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more details.

[output_scores]booleanfalse

Whether or not to return the prediction scores. See scores under returned tensors for more details.

[return_dict_in_generate]booleanfalse

Whether or not to return a ModelOutput instead of a plain tuple.

[pad_token_id]number

The id of the padding token.

[bos_token_id]number

The id of the beginning-of-sequence token.

[eos_token_id]number | Array<number>

The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens.

[encoder_no_repeat_ngram_size]number0

If set to int > 0, all ngrams of that size that occur in the encoder_input_ids cannot occur in the decoder_input_ids.

[decoder_start_token_id]number

If an encoder-decoder model starts decoding with a different token than bos, the id of that token.

[generation_kwargs]Object{}

Additional generation kwargs will be forwarded to the generate function of the model. Kwargs that are not present in generate's signature will be used in the model forward pass.


< > Update on GitHub