LlaMol / trainer.py
doammii's picture
Add LlaMol codes
55d9b0c verified
raw
history blame
20.4 kB
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, List, Union
from fragment_creator import fragment_creator_factory
from model import ContextArgs, ModelArgs
from tqdm import tqdm
import math
import os
import time
from contextlib import nullcontext
from datetime import datetime
from functools import partial
import torch
import numpy as np
from model import ContextArgs, Transformer, ModelArgs
from torch.distributed import destroy_process_group, init_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
from preprocess_dataset import SmilesTask
from tokenizer import SmilesTokenizer
import logging
logger = logging.getLogger(__name__)
@dataclass
class IOConfig:
# I/O
out_dir: str = "out"
eval_interval: int = 500
log_interval: int = 10
eval_iters: int = 25
eval_only: bool = False # if True, script exits right after the first eval
always_save_checkpoint: bool = (
False # if True, always save a checkpoint after each eval
)
init_from: str = "scratch" # 'scratch' or 'resume'
resume_when_snapshot_available: bool = True
@dataclass
class LoaderConfig:
# data
batch_size: int = (
384 # if gradient_accumulation_steps > 1, this is the micro-batch size
)
max_seq_len: int = 768
dataset: str = "smiles"
processed_dataset_ckpt: str = "processed_dataset_None.pkl"
fragment_creator: Union[str, None] = None
# dim = 256
# n_layers = 8
# n_heads = 8
# multiple_of = 128
# dropout = 0.1
@dataclass
class OptimizerConfig:
# adamw optimizer
gradient_accumulation_steps: int = 4 # used to simulate larger batch sizes
learning_rate: float = 1e-4 # max learning rate
max_iters: int = 100000 # total number of training iterations
weight_decay: float = 1e-1
beta1: float = 0.9
beta2: float = 0.95
grad_clip: float = 1.0 # clip gradients at this value, or disable if == 0.0
# learning rate decay settings
decay_lr: bool = True # whether to decay the learning rate
warmup_iters: int = 1000 # how many steps to warm up for
lr_decay_iters: int = 100000 # should be ~= max_iters per Chinchilla
min_lr: float = (
0.0 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
)
@dataclass
class TrainerArgs:
# Input / Output
io_conf: IOConfig
# Loader Configs
loader_conf: LoaderConfig
# Transformer Args
model_conf: ModelArgs
context_conf: ContextArgs
# Optimizer
optimizer_conf: OptimizerConfig
run_name: str
class Trainer:
def __init__(
self, train_args: TrainerArgs, dtype: str = "float16", compile: bool = False
) -> None:
self.train_conf = train_args
self.dtype = dtype
self.compile = compile
# system
self.run_name = train_args.run_name
self.device = (
"cuda:0" if torch.cuda.is_available() else "cpu"
) # "cuda" # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
self.CKPT_PT = f"{self.run_name}.pt"
self.SNAPSHOT_PT = f"snapshot_{self.run_name}.pt"
def _init_ddp_if_possible(self):
# various inits, derived attributes, I/O setup
self.ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
if self.ddp:
logger.info(f"Using ddp!")
init_process_group(backend="nccl")
self.ddp_rank = int(os.environ["RANK"])
self.ddp_local_rank = int(os.environ["LOCAL_RANK"])
self.ddp_world_size = int(os.environ["WORLD_SIZE"])
logger.info(f"{self.ddp_rank}, {self.ddp_local_rank},{self.ddp_world_size}")
self.device = f"cuda:{self.ddp_local_rank}"
torch.cuda.set_device(self.device)
self.master_process = (
self.ddp_rank == 0
) # this process will do logging, checkpointing etc.
logger.info(f"Is master process {self.device}? {self.master_process}")
self.seed_offset = self.ddp_rank # each process gets a different seed
# world_size number of processes will be training simultaneously, so we can scale
# down the desired gradient accumulation iterations per process proportionally
assert (
self.train_conf.optimizer_conf.gradient_accumulation_steps
% self.ddp_world_size
== 0
)
self.train_conf.optimizer_conf.gradient_accumulation_steps //= (
self.ddp_world_size
)
else:
# if not ddp, we are running on a single gpu, and one process
self.master_process = True
self.seed_offset = 0
self.ddp_world_size = 1
def _init_train(self):
self.tokens_per_iter = (
self.train_conf.optimizer_conf.gradient_accumulation_steps
* self.ddp_world_size
* self.train_conf.loader_conf.batch_size
* self.train_conf.loader_conf.max_seq_len
)
if self.master_process:
logger.info(f"tokens per iteration will be: {self.tokens_per_iter:,}")
logger.info(
f"breaks down as: {self.train_conf.optimizer_conf.gradient_accumulation_steps} grad accum steps * {self.ddp_world_size} processes * {self.train_conf.loader_conf.batch_size} batch size * {self.train_conf.loader_conf.max_seq_len } max seq len"
)
if self.master_process:
os.makedirs(self.train_conf.io_conf.out_dir, exist_ok=True)
torch.manual_seed(1337 + self.seed_offset)
np.random.seed(1337 + self.seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
self.device_type = (
"cuda" if "cuda" in self.device else "cpu"
) # for later use in torch.autocast
# note: float16 data type will automatically use a GradScaler
ptdtype = {
"float32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[self.dtype]
self.ctx = (
nullcontext()
if self.device_type == "cpu"
else torch.amp.autocast(device_type=self.device_type, dtype=ptdtype)
)
# task-specific setup
task = {"smiles": SmilesTask}[self.train_conf.loader_conf.dataset]
self.iter_batches = partial(
task.iter_batches,
batch_size=self.train_conf.loader_conf.batch_size,
device=self.device,
context_keys=self.train_conf.context_conf.context_keys,
num_workers=0,
dataset=self.train_conf.loader_conf.processed_dataset_ckpt,
fragment_creator=fragment_creator_factory(
self.train_conf.loader_conf.fragment_creator
),
)
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
self.iter_num = 0
self.best_val_loss = 1e9
self.epoch = 1
self.tokenizer = SmilesTokenizer()
has_resumed = False
if (
self.train_conf.io_conf.init_from == "resume"
or self.train_conf.io_conf.resume_when_snapshot_available
):
snapshot_path = os.path.join(
self.train_conf.io_conf.out_dir, self.SNAPSHOT_PT
)
if os.path.exists(snapshot_path):
has_resumed = True
logger.info(f"Resuming training from {self.train_conf.io_conf.out_dir}")
# resume training from a checkpoint.
ckpt_path = os.path.join(self.train_conf.io_conf.out_dir, self.CKPT_PT)
self.model = Transformer.load(ckpt_path, device=self.device)
snapshot = torch.load(snapshot_path, map_location=self.device)
self.iter_num = snapshot["iter_num"]
self.best_val_loss = snapshot["best_val_loss"]
self.epoch = snapshot["epoch"]
if self.train_conf.io_conf.init_from == "scratch" and not has_resumed:
# init a new model from scratch
logger.info("Initializing a new model from scratch")
logger.info(self.device)
model_conf = self.train_conf.model_conf
model_conf.vocab_size = self.tokenizer.vocab_size
self.model = Transformer(model_conf, self.train_conf.context_conf).to(
self.device
)
logger.info(
f"Number of params: {self.model.getNumberParams()} Number Trainable Params: {self.model.getNumberTrainableParams()}"
)
# else:
# raise ValueError(
# f"Could not find option: {self.train_conf.io_conf.init_from}. Use either 'scratch' or 'resume'"
# )
self.model = self.model.to(self.device)
# initialize a GradScaler. If enabled=False scaler is a no-op
self.scaler = torch.cuda.amp.GradScaler(enabled=(self.dtype == "float16"))
# optimizer
self.optimizer = self.model.configure_optimizers(
self.train_conf.optimizer_conf.weight_decay,
self.train_conf.optimizer_conf.learning_rate,
(
self.train_conf.optimizer_conf.beta1,
self.train_conf.optimizer_conf.beta2,
),
self.device_type,
)
if (
self.train_conf.io_conf.init_from == "resume"
and "optimizer_state" in snapshot
):
logger.info("Loading optimizer state from snapshot")
self.optimizer.load_state_dict(snapshot["optimizer_state"])
snapshot = None # free up memory
# compile the model
if self.compile:
logger.info("compiling the model... (takes a ~minute)")
self.unoptimized_model = self.model
# NOTE: This is REALLY REALLY slow in our case, as the shapes are different in each epoch.
# So it recompiles every batch ._.
self.model = torch.compile(
self.model, dynamic=False
) # requires PyTorch 2.0
# wrap model into DDP container
if self.ddp:
# Ignore the `freqs_cis` buffer so that DDP does not broadcast it at
# construction time since NCCL does not support `ComplexFloat`
prefix = "_orig_mod." if compile else ""
self.model._ddp_params_and_buffers_to_ignore = {prefix + "freqs_cis"}
self.model = DDP(self.model, device_ids=[self.ddp_local_rank])
# helps estimate an arbitrarily accurate loss over either split using many batches
@torch.no_grad()
def estimate_loss(self):
out = {}
self.model.eval()
for split in ["train", "val"]:
batch_iter = self.iter_batches(split)
losses = torch.zeros(self.train_conf.io_conf.eval_iters) # keep on CPU
for k in tqdm(
range(self.train_conf.io_conf.eval_iters),
total=self.train_conf.io_conf.eval_iters,
desc="Eval",
):
try:
X = next(batch_iter)
with self.ctx:
# logger.info(model)
# logger.info(X["src"].device)
logits = self.model(
X["src"],
targets=X["tgt"],
context=X["context"],
fragment=X["fragment"],
)
loss = self.raw_model.last_loss
losses[k] = loss.item()
except StopIteration:
logger.info("Early Eval Stop")
out[split] = losses.mean()
self.model.train()
return out
# learning rate decay scheduler (cosine with warmup)
def get_lr(self, it: int):
warmup_iters = self.train_conf.optimizer_conf.warmup_iters
learning_rate = self.train_conf.optimizer_conf.learning_rate
lr_decay_iters = self.train_conf.optimizer_conf.lr_decay_iters
min_lr = self.train_conf.optimizer_conf.min_lr
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
def train(self):
self._init_ddp_if_possible()
self._init_train()
# training loop
train_batch_iter = self.iter_batches("train")
X = next(train_batch_iter) # fetch the very first batch
t0 = time.time()
local_iter_num = 0 # number of iterations in the lifetime of this process
self.raw_model = (
self.model.module if self.ddp else self.model
) # unwrap DDP container if needed
running_mfu = -1.0
gradient_accumulation_steps = (
self.train_conf.optimizer_conf.gradient_accumulation_steps
)
while True:
# determine and set the learning rate for this iteration
lr = (
self.get_lr(self.iter_num)
if self.train_conf.optimizer_conf.decay_lr
else self.train_conf.optimizer_conf.learning_rate
)
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
# evaluate the loss on train/val sets and write checkpoints
if (
self.iter_num % self.train_conf.io_conf.eval_interval == 0
and self.master_process
and self.iter_num != 0
):
logger.info(
f"Estimating loss for master_process({self.master_process}) on iter {self.iter_num}"
)
losses = self.estimate_loss()
logger.info(
f"step {self.iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
log_dict = {
"iter": self.iter_num,
"tokens": self.iter_num * self.tokens_per_iter,
"loss/train": losses["train"],
"loss/val": losses["val"],
"lr": lr,
"mfu": running_mfu * 100, # convert to percentage
}
logger.info(f"{log_dict}")
if (
losses["val"] < self.best_val_loss
or self.train_conf.io_conf.always_save_checkpoint
):
self.best_val_loss = losses["val"]
if self.iter_num > 0:
logger.info(
f"saving checkpoint to {self.train_conf.io_conf.out_dir}"
)
self.raw_model.save(
os.path.join(self.train_conf.io_conf.out_dir, self.CKPT_PT)
)
torch.save(
{
"iter_num": self.iter_num,
"epoch": self.epoch,
"best_val_loss": self.best_val_loss,
"optimizer_state": self.optimizer.state_dict(),
},
os.path.join(
self.train_conf.io_conf.out_dir, self.SNAPSHOT_PT
),
)
if self.iter_num == 0 and self.train_conf.io_conf.eval_only:
break
# forward backward update, with optional gradient accumulation to simulate larger batch size
# and using the GradScaler if data type is float16
for micro_step in range(gradient_accumulation_steps):
if self.ddp:
# in DDP training we only need to sync gradients at the last micro step.
# the official way to do this is with model.no_sync() context manager, but
# I really dislike that this bloats the code and forces us to repeat code
# looking at the source of that context manager, it just toggles this variable
self.model.require_backward_grad_sync = (
micro_step == gradient_accumulation_steps - 1
)
with self.ctx:
context = X["context"]
fragment = X["fragment"]
# SCL (Stochastic context learning) algorithm
if np.random.random() < 0.15 or fragment is None:
fragment = None
# NOTE: random delete one context or more context columns
current_context_keys = list(context.keys())
for k in current_context_keys:
if np.random.random() < 0.15:
del context[k]
logits = self.model(
X["src"], targets=X["tgt"], context=context, fragment=fragment
)
loss = self.raw_model.last_loss
loss = loss / gradient_accumulation_steps
# immediately async prefetch next batch while model is doing the forward pass on the GPU
try:
X = next(train_batch_iter)
except StopIteration:
# StopIteration is thrown if dataset ends
# reinitialize data loader
logger.info(f"Done Epoch {self.epoch}")
train_batch_iter = self.iter_batches("train")
X = next(train_batch_iter)
self.epoch += 1
# backward pass, with gradient scaling if training in fp16
self.scaler.scale(loss).backward()
# logger.info(loss)
# clip the gradient
if self.train_conf.optimizer_conf.grad_clip != 0.0:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.train_conf.optimizer_conf.grad_clip
)
# step the optimizer and scaler if training in fp16
self.scaler.step(self.optimizer)
self.scaler.update()
# flush the gradients as soon as we can, no need for this memory anymore
self.optimizer.zero_grad(set_to_none=True)
# timing and logging
t1 = time.time()
dt = t1 - t0
t0 = t1
if (
self.iter_num % self.train_conf.io_conf.log_interval == 0
and self.master_process
):
# get loss as float, scale up due to the divide above. note: this is a CPU-GPU sync point
lossf = loss.item() * gradient_accumulation_steps
if local_iter_num >= 5: # let the training loop settle a bit
mfu = self.raw_model.estimate_mfu(
self.train_conf.loader_conf.batch_size
* gradient_accumulation_steps,
dt,
)
running_mfu = (
mfu if running_mfu == -1.0 else 0.9 * running_mfu + 0.1 * mfu
)
logger.info(
f"{self.iter_num} | loss {lossf:.4f} | lr {lr:e} | {dt*1000:.2f}ms | mfu {running_mfu*100:.2f}%"
)
self.iter_num += 1
local_iter_num += 1
# termination conditions
if self.iter_num > self.train_conf.optimizer_conf.max_iters:
logger.info("Done with training iters!")
break
if self.ddp:
destroy_process_group()
if __name__ == "__main__":
pass