import os from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline model_name = "dbernsohn/roberta-java" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def preprocess_input(description): input_text = "Generate an agent that " + description inputs = tokenizer.encode(input_text, return_tensors='pt') return inputs def generate_agent_code(inputs): generated_ids = model.generate(inputs) agent_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return agent_code import os from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import pipeline # Load the pre-trained CodeBERTa model and tokenizer model_name = "dbernsohn/roberta-java" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Function to pre-process user input description def preprocess_input(description): input_text = "Generate an agent that " + description inputs = tokenizer.encode(input_text, return_tensors='pt') return inputs # Function to generate agent code using the fine-tuned model def generate_agent_code(inputs): generated_ids = model.generate(inputs) agent_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return agent_code # Example usage user_description = "can perform sentiment analysis on text data." inputs = preprocess_input(user_description) generated_code = generate_agent_code(inputs) print(generated_code)