Create notebooks/fine_tune.ipynb
Browse files- notebooks/fine_tune.ipynb +43 -0
notebooks/fine_tune.ipynb
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fine-tuning example notebook using Hugging Face's transformers and datasets libraries.
|
2 |
+
import json
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
# Load configuration
|
7 |
+
with open('../config/config.json') as f:
|
8 |
+
config = json.load(f)
|
9 |
+
|
10 |
+
# Load dataset
|
11 |
+
dataset = load_dataset('csv', data_files={'train': '../data/train.csv', 'validation': '../data/valid.csv'})
|
12 |
+
|
13 |
+
# Load model and tokenizer
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(config['model_name'], num_labels=config['num_labels'])
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(config['model_name'])
|
16 |
+
|
17 |
+
# Tokenize dataset
|
18 |
+
def tokenize_function(examples):
|
19 |
+
return tokenizer(examples['text'], padding="max_length", truncation=True)
|
20 |
+
|
21 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
22 |
+
|
23 |
+
# Training arguments
|
24 |
+
training_args = TrainingArguments(
|
25 |
+
output_dir='../results',
|
26 |
+
learning_rate=config['learning_rate'],
|
27 |
+
per_device_train_batch_size=config['batch_size'],
|
28 |
+
num_train_epochs=config['num_epochs'],
|
29 |
+
evaluation_strategy="epoch",
|
30 |
+
save_strategy="epoch",
|
31 |
+
logging_dir='../logs'
|
32 |
+
)
|
33 |
+
|
34 |
+
trainer = Trainer(
|
35 |
+
model=model,
|
36 |
+
args=training_args,
|
37 |
+
train_dataset=tokenized_datasets['train'],
|
38 |
+
eval_dataset=tokenized_datasets['validation'],
|
39 |
+
tokenizer=tokenizer
|
40 |
+
)
|
41 |
+
|
42 |
+
trainer.train()
|
43 |
+
trainer.save_model('../model')
|