dmis-lab commited on
Commit
6de179b
1 Parent(s): 62e6791

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -3
README.md CHANGED
@@ -1,3 +1,136 @@
1
- ---
2
- license: gpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ base_model: facebook/bart-large
8
+ ---
9
+
10
+ # Model Card for ANGEL_pretrained
11
+ This model card provides detailed information about the ANGEL_pretrained model, designed for biomedical entity linking.
12
+
13
+ # Model Details
14
+
15
+ #### Model Description
16
+ - **Developed by:** Chanhwi Kim, Hyunjae Kim, Sihyeon Park, Jiwoo Lee, Mujeen Sung, Jaewoo Kang
17
+ - **Model type:** Generative Biomedical Entity Linking Model
18
+ - **Language(s):** English
19
+ - **License:** GPL-3.0
20
+ - **Finetuned from model:** BART-large (Base architecture)
21
+
22
+ #### Model Sources
23
+
24
+ - **Repository:** https://github.com/dmis-lab/ANGEL
25
+ - **Paper:** https://arxiv.org/pdf/2408.16493
26
+
27
+
28
+ # Direct Use
29
+ ANGEL_pretrained is pretrained with UMLS dataset.
30
+ We recommand to finetune this model to downstream dataset rather directly use.
31
+ If you still want to run the model on a single sample, no preprocessing is required.
32
+ Simply execute the run_sample.sh script:
33
+
34
+ ```bash
35
+ bash script/inference/run_sample.sh pretrained
36
+ ```
37
+
38
+ To modify the sample with your own example, refer to the [Direct Use](https://github.com/dmis-lab/ANGEL?tab=readme-ov-file#direct-use) section in our GitHub repository.
39
+ If you're interested in training or evaluating the model, check out the [Fine-tuning](https://github.com/dmis-lab/ANGEL?tab=readme-ov-file#fine-tuning) section and [Evaluation](https://github.com/dmis-lab/ANGEL?tab=readme-ov-file#evaluation) section.
40
+
41
+
42
+ # Training Details
43
+
44
+ #### Training Data
45
+ The model was pretrained on the UMLS-2020-AA dataset.
46
+
47
+ #### Training Procedure
48
+ Positive-only Pre-training: Initial training using only positive examples, following the standard approach.
49
+
50
+ Negative-aware Training: Subsequent training incorporated negative examples to improve the model's discriminative capabilities.
51
+
52
+ # Evaluation
53
+
54
+ #### Testing Data
55
+ The model was evaluated using multiple biomedical datasets, including NCBI-disease, BC5CDR, COMETA, AAP, and MedMentions.
56
+ The fine-tuned scores have also been included.
57
+
58
+ #### Metrics
59
+ **Accuracy at Top-1 (Acc@1)**: Measures the percentage of times the model's top prediction matches the correct entity.
60
+
61
+ ### Results
62
+
63
+ <table border="1" cellspacing="0" cellpadding="5" style="width: 100%; text-align: center; border-collapse: collapse; margin-left: 0;">
64
+ <thead>
65
+ <tr>
66
+ <th style="text-align: center;"><b>Model</b></th>
67
+ <th style="text-align: center;"><b>NCBI-disease</b></th>
68
+ <th style="text-align: center;"><b>BC5CDR</b></th>
69
+ <th style="text-align: center;"><b>COMETA</b></th>
70
+ <th style="text-align: center;"><b>AAP</b></th>
71
+ <th style="text-align: center;"><b>MedMentions<br>ST21pv</b></th>
72
+ <th style="text-align: center;"><b>Average</b></th>
73
+ </tr>
74
+ </thead>
75
+ <tbody>
76
+ <tr>
77
+ <td><b>GenBioEL_pretrained</b></td>
78
+ <td>58.2</td>
79
+ <td>33.1</td>
80
+ <td>42.4</td>
81
+ <td>50.6</td>
82
+ <td>10.6</td>
83
+ <td><b>39.0</b></td>
84
+ </tr>
85
+ <tr>
86
+ <td><b>ANGEL_pretrained (Ours)</b></td>
87
+ <td>64.6</td>
88
+ <td>49.7</td>
89
+ <td>46.8</td>
90
+ <td>61.5</td>
91
+ <td>18.2</td>
92
+ <td><b>48.2</b></td>
93
+ </tr>
94
+ <tr>
95
+ <td><b>GenBioEL_pt_ft</b></td>
96
+ <td>91.0</td>
97
+ <td>93.1</td>
98
+ <td>80.9</td>
99
+ <td>89.3</td>
100
+ <td>70.7</td>
101
+ <td><b>85.0</b></td>
102
+ </tr>
103
+ <tr>
104
+ <td><b>ANGEL_pt_ft (Ours)</b></td>
105
+ <td>92.8</td>
106
+ <td>94.5</td>
107
+ <td>82.8</td>
108
+ <td>90.2</td>
109
+ <td>73.3</td>
110
+ <td><b>86.7</b></td>
111
+ </tr>
112
+ </tbody>
113
+ </table>
114
+
115
+ - In this table, "pt" refers to pre-training, where the model is trained on a large dataset (UMLS in this case), and "ft" refers to fine-tuning, where the model is further refined on specific datasets.
116
+
117
+ In the pre-training phase, **ANGEL** was trained using UMLS dataset entities that were similar to a given word based on TF-IDF scores but had different CUIs (Concept Unique Identifiers).
118
+ This negative-aware pre-training approach improved its performance across the benchmarks, leading to an average score of 48.2, which is **9.2** points higher than the GenBioEL pre-trained model, which scored 39.0 on average.
119
+
120
+ The performance improvement continued during the fine-tuning phase. After fine-tuning, ANGEL achieved an average score of 86.7, surpassing the GenBioEL model's average score of 85.0, representing a further **1.7** point improvement. The ANGEL model consistently outperformed GenBioEL across all datasets in this phase.
121
+ The results demonstrate that the negative-aware training introduced by ANGEL not only enhances performance during pre-training but also carries over into fine-tuning, helping the model generalize better to unseen data.
122
+
123
+ # Citation
124
+ If you use the ANGEL_ncbi model, please cite:
125
+
126
+ ```bibtex
127
+ @article{kim2024learning,
128
+ title={Learning from Negative Samples in Generative Biomedical Entity Linking},
129
+ author={Kim, Chanhwi and Kim, Hyunjae and Park, Sihyeon and Lee, Jiwoo and Sung, Mujeen and Kang, Jaewoo},
130
+ journal={arXiv preprint arXiv:2408.16493},
131
+ year={2024}
132
+ }
133
+ ```
134
+
135
+ # Contact
136
+ For questions or issues, please contact [email protected].