dizkee commited on
Commit
d7359b7
1 Parent(s): 8e6aad7

PPO LunarLander-v2 from Deep RL Course

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.89 +/- 19.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a58f8c931c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a58f8c93250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a58f8c932e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a58f8c93370>", "_build": "<function ActorCriticPolicy._build at 0x7a58f8c93400>", "forward": "<function ActorCriticPolicy.forward at 0x7a58f8c93490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a58f8c93520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a58f8c935b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a58f8c93640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a58f8c936d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a58f8c93760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a58f8c937f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a58f8c94300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726133560598920468, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1VkT3KziM/DqQYu0HqaL548hU9ZYtSPAAAAAAAAAAAmgn6ug6Vqj0d8NA9bimzvjPihzyFANU8AAAAAAAAAADNJGu8tnrMPqHhCT6gubK+MYjmO9bejzwAAAAAAAAAAABeVT31W7w+ajcRvlM/hb6/fpS9nmK7vQAAAAAAAAAAAKS2O+8YqT51Q3U9v/6evgOuvDrlXTg9AAAAAAAAAACah+C8vyiAP86rdrxNZrK+7BbAvUaerT0AAAAAAAAAAGYYEb6vr8Q+2yNuPmb8qL5PFdg6kFEfvgAAAAAAAAAAZl/lPLJjqz/EYAY996nJvos+gz3xnqg6AAAAAAAAAACaJc67zmuAPb3C9zwNPFS+hS99vOvt/DwAAAAAAAAAALPPIj4MAsE/ND0dP6k7Fb6kKGo+7lZqPgAAAAAAAAAAGowOvVOQAj8NFu09mwWevjp8Hj04slG8AAAAAAAAAABAvr89rmGXuv1lCroCfb01JdjKuemlHzkAAAAAAACAP7OlYD2bopK8FEqFu66WqzxBeAU+dWiHvQAAgD8AAIA/pkuRPXuKgrrUz4y4h7wQtPMztbo2o6M3AACAPwAAgD+a5rI9z38UvLm8njva5o48GYt+vbXobT0AAIA/AAAAACPYZr7ZAgg/OYODPmWZnb5HQ0K9GyI6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEOr/CIk7iMAWyUTVcBjAF0lEdAnNP9sN2C/XV9lChoBkdAa5gTTvy9VWgHTUsBaAhHQJzVpwKjSG91fZQoaAZHQG+s07KaG6BoB005AWgIR0Cc1/0dzXBhdX2UKGgGR0BvwgbfgrH3aAdNOwFoCEdAnNiHEZR8+nV9lChoBkdAbEzm9QGfPGgHTR4BaAhHQJzY7YGt6ol1fZQoaAZHQG9vEmICU5doB01vAWgIR0Cc2xgDzRQadX2UKGgGR0Bvz/jbSJCTaAdNdAFoCEdAnNsjyWiUPnV9lChoBkdAcIq16mfoR2gHTRABaAhHQJzb0c+7lJZ1fZQoaAZHQG2lBV2icoZoB01DAWgIR0Cc3CNpdrwfdX2UKGgGR0BvsfumaYu1aAdNTgFoCEdAnNyCSRr8BXV9lChoBkdAcEuuivgWJ2gHTRIBaAhHQJzc/27FsHl1fZQoaAZHQHCuG8yvcJtoB003AWgIR0Cc3Yv9cbBHdX2UKGgGR0BF9fxUedTYaAdL0WgIR0Cc3b3fyf+TdX2UKGgGR0BwRBu/DcdpaAdNmAFoCEdAnN4RYA80UHV9lChoBkdAccQzLwF1S2gHTcMDaAhHQJze/vw3HaN1fZQoaAZHQHIkGig00nBoB008AWgIR0Cc3wdI5HVgdX2UKGgGR0BUkjP8hs68aAdL9mgIR0Cc4pn+yZ8bdX2UKGgGR0Bvy5KvmozfaAdNUQFoCEdAnOLcFlkH2XV9lChoBkdAMdEM9bHIZWgHS9xoCEdAnON7KaG5+nV9lChoBkdAcMr7Kq4pdGgHTVwBaAhHQJzkslb/wRZ1fZQoaAZHQE0SMaS9ugpoB0vRaAhHQJzln+ERJ3B1fZQoaAZHQHMBW6ClJpZoB01JAWgIR0Cc5g7I1cdHdX2UKGgGR0Bw1zkwN9YwaAdNIwFoCEdAnObyu6mO2nV9lChoBkdAcqT23KB/Z2gHTSUBaAhHQJzoikoF3ZB1fZQoaAZHQHBA+biIcipoB00ZAWgIR0Cc6IlZ5iVjdX2UKGgGR0BvI0xbjcVQaAdNOAFoCEdAnOiffTCtR3V9lChoBkdAcX5nPE87p2gHTREBaAhHQJzo0pBomHB1fZQoaAZHQG2rn3UQTVVoB02iAWgIR0Cc6tCMPz4DdX2UKGgGR0Bs3rsOXmeUaAdNOwFoCEdAnOwujZcs2HV9lChoBkdAbyJAE+xGD2gHTQwBaAhHQJzvVjy4FzN1fZQoaAZHQFDyS9ugpSdoB0vMaAhHQJzvktAcDKZ1fZQoaAZHQHCaeZssQNFoB02dAWgIR0Cc7+bor4FidX2UKGgGR0BxkRiExqO+aAdNsAFoCEdAnPI5yZKFqXV9lChoBkdAcI9/DtPYWmgHTTYBaAhHQJzyOubI91V1fZQoaAZHQHDzLqQiiZhoB001AWgIR0Cc82uqWC2+dX2UKGgGR0BxUxV0cOslaAdNbQFoCEdAnPPRmwqy4XV9lChoBkdAb654oJAt4GgHTTMBaAhHQJz1cCZF5Od1fZQoaAZHQG9RcW9DhLpoB00SAWgIR0Cc9aTZQHiWdX2UKGgGR0BsX5WaMJhOaAdNLAFoCEdAnPa190A93nV9lChoBkdAcX+98Z1mrmgHTTQBaAhHQJz3Z0uDjBF1fZQoaAZHQHHMrsF+uvFoB01EAWgIR0Cc97CNjslcdX2UKGgGR0Bw0aXlbNbDaAdNUQFoCEdAnPqZ5JK8MHV9lChoBkdAcDeL9uP3jGgHTTgBaAhHQJz/rTpgTh51fZQoaAZHQG0UvAXVLBdoB03/AmgIR0CdABLSeAd5dX2UKGgGR0Bvh9BnjABUaAdNPAFoCEdAnQAyon8baXV9lChoBkdAckQ1vES/TWgHTSQBaAhHQJ0bsEQoTf11fZQoaAZHQHB4qMR6F/RoB01jAWgIR0CdHHLjPv8ZdX2UKGgGR0BzDZclgMMJaAdNOQFoCEdAnRytN34bj3V9lChoBkdAcs9R1X/5tWgHTS0BaAhHQJ0dbD+BH091fZQoaAZHQG34o1+AmRhoB00uAWgIR0CdHe5oXbdrdX2UKGgGR0Bxv+sny/bkaAdNbQJoCEdAnR62gWac7XV9lChoBkdAcGXTgVGkOGgHTSIBaAhHQJ0e0ytV7yB1fZQoaAZHQHCMzR6Ww/xoB007AWgIR0CdH8yZ8a4udX2UKGgGR0BtnrhzeXRgaAdNGAFoCEdAnSACq+8Gs3V9lChoBkdAb6nmWdEsrmgHTVoBaAhHQJ0iKgUUO/d1fZQoaAZHQD+i6vq1PWRoB0vVaAhHQJ0jFsGgSOB1fZQoaAZHQHH/dAgPmPpoB01DAWgIR0CdJMNiH6/JdX2UKGgGR0BAw/SH/LkkaAdL0mgIR0CdJUpBX0XhdX2UKGgGR0Bx68sBhhH9aAdNKAFoCEdAnSczKDCgsnV9lChoBkdAcNLvgFX7tWgHTQIBaAhHQJ0nx7hNucd1fZQoaAZHQHDwkz41xbVoB00lAWgIR0CdKGNkOI69dX2UKGgGR0BxrTcynDR/aAdL+GgIR0CdKGLux8lYdX2UKGgGR0Bxaf+qBEroaAdNywJoCEdAnSjf3ztkWnV9lChoBkdAcP1b0voNeGgHTRsBaAhHQJ0plmXgLql1fZQoaAZHQHJ/FJ17pmpoB012AWgIR0CdKp3XI2fkdX2UKGgGR0ByOTz5GjKxaAdNDAFoCEdAnSuNrwe/6HV9lChoBkdAcQd7ALy+YmgHTS4BaAhHQJ0roxmCiAV1fZQoaAZHQHKvnP7el9BoB01CAWgIR0CdLDcjqv/zdX2UKGgGR0BxFxBHCoCNaAdNNwFoCEdAnSzx1gYxcnV9lChoBkdAcvddrO7g9GgHS/5oCEdAnS4E1Muez3V9lChoBkdAcJe9l2/zrmgHTT4BaAhHQJ0vd1QqI8B1fZQoaAZHQHEf9QsPJ7toB02HAmgIR0CdL734bjtHdX2UKGgGR0BxylpztCzDaAdNDgFoCEdAnTAywB5ooXV9lChoBkdAcb1BOYYzi2gHTQUBaAhHQJ0wM5Ke05V1fZQoaAZHQG8LD8k2P1doB00cAWgIR0CdM1/BWPtEdX2UKGgGR0BwMmFZgXuWaAdNEQFoCEdAnTN4njQzDXV9lChoBkdAbx6Lk0aZQmgHTQcBaAhHQJ0zr6AOJ+F1fZQoaAZHQHGE8n/kvK5oB00aAWgIR0CdNLe1a4c4dX2UKGgGR0Bx8LQY1pCbaAdNFQFoCEdAnTUhREWqLnV9lChoBkdAUO/k92X9i2gHS95oCEdAnTWhdD6WPnV9lChoBkdAbEMLhrFfiWgHTQ0BaAhHQJ02zBfrrxB1fZQoaAZHQHGVF2A5JbtoB01GAWgIR0CdOFIoE0SAdX2UKGgGR0Bv5DiVB2OiaAdNPQFoCEdAnTssrI5o5HV9lChoBkdAcW5ARkEs8WgHTUEBaAhHQJ08ngQ6IWR1fZQoaAZHQHA8Vlf7aZhoB00tAWgIR0CdPJ6p5u63dX2UKGgGR0By0Rj4HoovaAdNMgFoCEdAnT6FCb+cY3V9lChoBkdAcSMDUVi4KGgHTTUBaAhHQJ1CBxdY4hl1fZQoaAZHQHDUd+XqqwRoB002AWgIR0CdQhQarFOxdX2UKGgGR0BtuXAIppevaAdNXAFoCEdAnUMAjyFwk3V9lChoBkdAc/kfAsTWXmgHTRIBaAhHQJ1DoeyRjjJ1fZQoaAZHQHJxx5gPVd5oB0v9aAhHQJ1D1Oh0yQB1fZQoaAZHQHCUdcry1/loB000AWgIR0CdRNH4XXRPdX2UKGgGR0Bw8dxCIDYAaAdNIgFoCEdAnUUnGCI1tXV9lChoBkdAbPXteD3/P2gHTR8BaAhHQJ1F2kUKzAx1fZQoaAZHQHDBB33YcvNoB01HAWgIR0CdReaPCEYgdX2UKGgGR0Bx70z9CNS7aAdNrQFoCEdAnUbXLvCuU3V9lChoBkdAb9jnr6ciGGgHTSkBaAhHQJ1HAf0VafV1fZQoaAZHQHODgFgUlAxoB00GAWgIR0CdSQSOBDohdX2UKGgGR0BxK5pN9H+ZaAdNIQFoCEdAnUk4WtU4rHV9lChoBkdAcF8FrVOKwmgHTR0BaAhHQJ1KBxPwd811ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95424d2353f458a4fd68767e057fa55b7609de52b89d6004e714b5508dc98635
3
+ size 148072
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a58f8c931c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a58f8c93250>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a58f8c932e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a58f8c93370>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a58f8c93400>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a58f8c93490>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a58f8c93520>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a58f8c935b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a58f8c93640>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a58f8c936d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a58f8c93760>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a58f8c937f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a58f8c94300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1726133560598920468,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1VkT3KziM/DqQYu0HqaL548hU9ZYtSPAAAAAAAAAAAmgn6ug6Vqj0d8NA9bimzvjPihzyFANU8AAAAAAAAAADNJGu8tnrMPqHhCT6gubK+MYjmO9bejzwAAAAAAAAAAABeVT31W7w+ajcRvlM/hb6/fpS9nmK7vQAAAAAAAAAAAKS2O+8YqT51Q3U9v/6evgOuvDrlXTg9AAAAAAAAAACah+C8vyiAP86rdrxNZrK+7BbAvUaerT0AAAAAAAAAAGYYEb6vr8Q+2yNuPmb8qL5PFdg6kFEfvgAAAAAAAAAAZl/lPLJjqz/EYAY996nJvos+gz3xnqg6AAAAAAAAAACaJc67zmuAPb3C9zwNPFS+hS99vOvt/DwAAAAAAAAAALPPIj4MAsE/ND0dP6k7Fb6kKGo+7lZqPgAAAAAAAAAAGowOvVOQAj8NFu09mwWevjp8Hj04slG8AAAAAAAAAABAvr89rmGXuv1lCroCfb01JdjKuemlHzkAAAAAAACAP7OlYD2bopK8FEqFu66WqzxBeAU+dWiHvQAAgD8AAIA/pkuRPXuKgrrUz4y4h7wQtPMztbo2o6M3AACAPwAAgD+a5rI9z38UvLm8njva5o48GYt+vbXobT0AAIA/AAAAACPYZr7ZAgg/OYODPmWZnb5HQ0K9GyI6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEOr/CIk7iMAWyUTVcBjAF0lEdAnNP9sN2C/XV9lChoBkdAa5gTTvy9VWgHTUsBaAhHQJzVpwKjSG91fZQoaAZHQG+s07KaG6BoB005AWgIR0Cc1/0dzXBhdX2UKGgGR0BvwgbfgrH3aAdNOwFoCEdAnNiHEZR8+nV9lChoBkdAbEzm9QGfPGgHTR4BaAhHQJzY7YGt6ol1fZQoaAZHQG9vEmICU5doB01vAWgIR0Cc2xgDzRQadX2UKGgGR0Bvz/jbSJCTaAdNdAFoCEdAnNsjyWiUPnV9lChoBkdAcIq16mfoR2gHTRABaAhHQJzb0c+7lJZ1fZQoaAZHQG2lBV2icoZoB01DAWgIR0Cc3CNpdrwfdX2UKGgGR0BvsfumaYu1aAdNTgFoCEdAnNyCSRr8BXV9lChoBkdAcEuuivgWJ2gHTRIBaAhHQJzc/27FsHl1fZQoaAZHQHCuG8yvcJtoB003AWgIR0Cc3Yv9cbBHdX2UKGgGR0BF9fxUedTYaAdL0WgIR0Cc3b3fyf+TdX2UKGgGR0BwRBu/DcdpaAdNmAFoCEdAnN4RYA80UHV9lChoBkdAccQzLwF1S2gHTcMDaAhHQJze/vw3HaN1fZQoaAZHQHIkGig00nBoB008AWgIR0Cc3wdI5HVgdX2UKGgGR0BUkjP8hs68aAdL9mgIR0Cc4pn+yZ8bdX2UKGgGR0Bvy5KvmozfaAdNUQFoCEdAnOLcFlkH2XV9lChoBkdAMdEM9bHIZWgHS9xoCEdAnON7KaG5+nV9lChoBkdAcMr7Kq4pdGgHTVwBaAhHQJzkslb/wRZ1fZQoaAZHQE0SMaS9ugpoB0vRaAhHQJzln+ERJ3B1fZQoaAZHQHMBW6ClJpZoB01JAWgIR0Cc5g7I1cdHdX2UKGgGR0Bw1zkwN9YwaAdNIwFoCEdAnObyu6mO2nV9lChoBkdAcqT23KB/Z2gHTSUBaAhHQJzoikoF3ZB1fZQoaAZHQHBA+biIcipoB00ZAWgIR0Cc6IlZ5iVjdX2UKGgGR0BvI0xbjcVQaAdNOAFoCEdAnOiffTCtR3V9lChoBkdAcX5nPE87p2gHTREBaAhHQJzo0pBomHB1fZQoaAZHQG2rn3UQTVVoB02iAWgIR0Cc6tCMPz4DdX2UKGgGR0Bs3rsOXmeUaAdNOwFoCEdAnOwujZcs2HV9lChoBkdAbyJAE+xGD2gHTQwBaAhHQJzvVjy4FzN1fZQoaAZHQFDyS9ugpSdoB0vMaAhHQJzvktAcDKZ1fZQoaAZHQHCaeZssQNFoB02dAWgIR0Cc7+bor4FidX2UKGgGR0BxkRiExqO+aAdNsAFoCEdAnPI5yZKFqXV9lChoBkdAcI9/DtPYWmgHTTYBaAhHQJzyOubI91V1fZQoaAZHQHDzLqQiiZhoB001AWgIR0Cc82uqWC2+dX2UKGgGR0BxUxV0cOslaAdNbQFoCEdAnPPRmwqy4XV9lChoBkdAb654oJAt4GgHTTMBaAhHQJz1cCZF5Od1fZQoaAZHQG9RcW9DhLpoB00SAWgIR0Cc9aTZQHiWdX2UKGgGR0BsX5WaMJhOaAdNLAFoCEdAnPa190A93nV9lChoBkdAcX+98Z1mrmgHTTQBaAhHQJz3Z0uDjBF1fZQoaAZHQHHMrsF+uvFoB01EAWgIR0Cc97CNjslcdX2UKGgGR0Bw0aXlbNbDaAdNUQFoCEdAnPqZ5JK8MHV9lChoBkdAcDeL9uP3jGgHTTgBaAhHQJz/rTpgTh51fZQoaAZHQG0UvAXVLBdoB03/AmgIR0CdABLSeAd5dX2UKGgGR0Bvh9BnjABUaAdNPAFoCEdAnQAyon8baXV9lChoBkdAckQ1vES/TWgHTSQBaAhHQJ0bsEQoTf11fZQoaAZHQHB4qMR6F/RoB01jAWgIR0CdHHLjPv8ZdX2UKGgGR0BzDZclgMMJaAdNOQFoCEdAnRytN34bj3V9lChoBkdAcs9R1X/5tWgHTS0BaAhHQJ0dbD+BH091fZQoaAZHQG34o1+AmRhoB00uAWgIR0CdHe5oXbdrdX2UKGgGR0Bxv+sny/bkaAdNbQJoCEdAnR62gWac7XV9lChoBkdAcGXTgVGkOGgHTSIBaAhHQJ0e0ytV7yB1fZQoaAZHQHCMzR6Ww/xoB007AWgIR0CdH8yZ8a4udX2UKGgGR0BtnrhzeXRgaAdNGAFoCEdAnSACq+8Gs3V9lChoBkdAb6nmWdEsrmgHTVoBaAhHQJ0iKgUUO/d1fZQoaAZHQD+i6vq1PWRoB0vVaAhHQJ0jFsGgSOB1fZQoaAZHQHH/dAgPmPpoB01DAWgIR0CdJMNiH6/JdX2UKGgGR0BAw/SH/LkkaAdL0mgIR0CdJUpBX0XhdX2UKGgGR0Bx68sBhhH9aAdNKAFoCEdAnSczKDCgsnV9lChoBkdAcNLvgFX7tWgHTQIBaAhHQJ0nx7hNucd1fZQoaAZHQHDwkz41xbVoB00lAWgIR0CdKGNkOI69dX2UKGgGR0BxrTcynDR/aAdL+GgIR0CdKGLux8lYdX2UKGgGR0Bxaf+qBEroaAdNywJoCEdAnSjf3ztkWnV9lChoBkdAcP1b0voNeGgHTRsBaAhHQJ0plmXgLql1fZQoaAZHQHJ/FJ17pmpoB012AWgIR0CdKp3XI2fkdX2UKGgGR0ByOTz5GjKxaAdNDAFoCEdAnSuNrwe/6HV9lChoBkdAcQd7ALy+YmgHTS4BaAhHQJ0roxmCiAV1fZQoaAZHQHKvnP7el9BoB01CAWgIR0CdLDcjqv/zdX2UKGgGR0BxFxBHCoCNaAdNNwFoCEdAnSzx1gYxcnV9lChoBkdAcvddrO7g9GgHS/5oCEdAnS4E1Muez3V9lChoBkdAcJe9l2/zrmgHTT4BaAhHQJ0vd1QqI8B1fZQoaAZHQHEf9QsPJ7toB02HAmgIR0CdL734bjtHdX2UKGgGR0BxylpztCzDaAdNDgFoCEdAnTAywB5ooXV9lChoBkdAcb1BOYYzi2gHTQUBaAhHQJ0wM5Ke05V1fZQoaAZHQG8LD8k2P1doB00cAWgIR0CdM1/BWPtEdX2UKGgGR0BwMmFZgXuWaAdNEQFoCEdAnTN4njQzDXV9lChoBkdAbx6Lk0aZQmgHTQcBaAhHQJ0zr6AOJ+F1fZQoaAZHQHGE8n/kvK5oB00aAWgIR0CdNLe1a4c4dX2UKGgGR0Bx8LQY1pCbaAdNFQFoCEdAnTUhREWqLnV9lChoBkdAUO/k92X9i2gHS95oCEdAnTWhdD6WPnV9lChoBkdAbEMLhrFfiWgHTQ0BaAhHQJ02zBfrrxB1fZQoaAZHQHGVF2A5JbtoB01GAWgIR0CdOFIoE0SAdX2UKGgGR0Bv5DiVB2OiaAdNPQFoCEdAnTssrI5o5HV9lChoBkdAcW5ARkEs8WgHTUEBaAhHQJ08ngQ6IWR1fZQoaAZHQHA8Vlf7aZhoB00tAWgIR0CdPJ6p5u63dX2UKGgGR0By0Rj4HoovaAdNMgFoCEdAnT6FCb+cY3V9lChoBkdAcSMDUVi4KGgHTTUBaAhHQJ1CBxdY4hl1fZQoaAZHQHDUd+XqqwRoB002AWgIR0CdQhQarFOxdX2UKGgGR0BtuXAIppevaAdNXAFoCEdAnUMAjyFwk3V9lChoBkdAc/kfAsTWXmgHTRIBaAhHQJ1DoeyRjjJ1fZQoaAZHQHJxx5gPVd5oB0v9aAhHQJ1D1Oh0yQB1fZQoaAZHQHCUdcry1/loB000AWgIR0CdRNH4XXRPdX2UKGgGR0Bw8dxCIDYAaAdNIgFoCEdAnUUnGCI1tXV9lChoBkdAbPXteD3/P2gHTR8BaAhHQJ1F2kUKzAx1fZQoaAZHQHDBB33YcvNoB01HAWgIR0CdReaPCEYgdX2UKGgGR0Bx70z9CNS7aAdNrQFoCEdAnUbXLvCuU3V9lChoBkdAb9jnr6ciGGgHTSkBaAhHQJ1HAf0VafV1fZQoaAZHQHODgFgUlAxoB00GAWgIR0CdSQSOBDohdX2UKGgGR0BxK5pN9H+ZaAdNIQFoCEdAnUk4WtU4rHV9lChoBkdAcF8FrVOKwmgHTR0BaAhHQJ1KBxPwd811ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 252,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948dead55d1eae04a247c30cad8abe1af65693b45a8d0f6684928dcf1707437b
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d5295e63fadfde9be9054cff87c5dda2177ad6b8f8e865a2c4047db70da2283
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (176 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.89156020000004, "std_reward": 19.764313411589665, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-12T10:33:03.215303"}