dipteshkanojia
commited on
Commit
•
8f616f2
1
Parent(s):
263762d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hing-roberta-CM-run-3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hing-roberta-CM-run-3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.6968
|
23 |
+
- Accuracy: 0.7565
|
24 |
+
- Precision: 0.7045
|
25 |
+
- Recall: 0.7064
|
26 |
+
- F1: 0.7050
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.8232 | 1.0 | 497 | 0.7145 | 0.6620 | 0.6319 | 0.6585 | 0.6167 |
|
58 |
+
| 0.5799 | 2.0 | 994 | 0.7155 | 0.7203 | 0.6718 | 0.6928 | 0.6672 |
|
59 |
+
| 0.4152 | 3.0 | 1491 | 0.8823 | 0.7485 | 0.6962 | 0.7136 | 0.7022 |
|
60 |
+
| 0.2657 | 4.0 | 1988 | 1.4502 | 0.7465 | 0.6945 | 0.7037 | 0.6968 |
|
61 |
+
| 0.16 | 5.0 | 2485 | 2.0667 | 0.7465 | 0.6890 | 0.6827 | 0.6855 |
|
62 |
+
| 0.0945 | 6.0 | 2982 | 2.0120 | 0.7565 | 0.7091 | 0.7159 | 0.7103 |
|
63 |
+
| 0.0802 | 7.0 | 3479 | 2.2426 | 0.7686 | 0.7253 | 0.7065 | 0.7088 |
|
64 |
+
| 0.059 | 8.0 | 3976 | 2.3472 | 0.7425 | 0.6844 | 0.6881 | 0.6861 |
|
65 |
+
| 0.041 | 9.0 | 4473 | 2.4801 | 0.7666 | 0.7258 | 0.7144 | 0.7145 |
|
66 |
+
| 0.0307 | 10.0 | 4970 | 2.6317 | 0.7545 | 0.7102 | 0.7021 | 0.7019 |
|
67 |
+
| 0.0471 | 11.0 | 5467 | 2.4626 | 0.7364 | 0.6836 | 0.6780 | 0.6788 |
|
68 |
+
| 0.0282 | 12.0 | 5964 | 2.3949 | 0.7586 | 0.7067 | 0.7108 | 0.7087 |
|
69 |
+
| 0.0267 | 13.0 | 6461 | 2.4750 | 0.7465 | 0.6938 | 0.6921 | 0.6921 |
|
70 |
+
| 0.0274 | 14.0 | 6958 | 2.5942 | 0.7565 | 0.7022 | 0.7062 | 0.7039 |
|
71 |
+
| 0.0212 | 15.0 | 7455 | 2.6728 | 0.7404 | 0.6851 | 0.6893 | 0.6867 |
|
72 |
+
| 0.026 | 16.0 | 7952 | 2.6683 | 0.7565 | 0.7064 | 0.7122 | 0.7085 |
|
73 |
+
| 0.0175 | 17.0 | 8449 | 2.6646 | 0.7505 | 0.7030 | 0.7087 | 0.7039 |
|
74 |
+
| 0.0126 | 18.0 | 8946 | 2.6948 | 0.7565 | 0.7021 | 0.7039 | 0.7030 |
|
75 |
+
| 0.0065 | 19.0 | 9443 | 2.6984 | 0.7565 | 0.7045 | 0.7064 | 0.7050 |
|
76 |
+
| 0.0103 | 20.0 | 9940 | 2.6968 | 0.7565 | 0.7045 | 0.7064 | 0.7050 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.20.1
|
82 |
+
- Pytorch 1.10.1+cu111
|
83 |
+
- Datasets 2.3.2
|
84 |
+
- Tokenizers 0.12.1
|