dipteshkanojia commited on
Commit
8f616f2
1 Parent(s): 263762d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-roberta-CM-run-3
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-roberta-CM-run-3
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.6968
23
+ - Accuracy: 0.7565
24
+ - Precision: 0.7045
25
+ - Recall: 0.7064
26
+ - F1: 0.7050
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.8232 | 1.0 | 497 | 0.7145 | 0.6620 | 0.6319 | 0.6585 | 0.6167 |
58
+ | 0.5799 | 2.0 | 994 | 0.7155 | 0.7203 | 0.6718 | 0.6928 | 0.6672 |
59
+ | 0.4152 | 3.0 | 1491 | 0.8823 | 0.7485 | 0.6962 | 0.7136 | 0.7022 |
60
+ | 0.2657 | 4.0 | 1988 | 1.4502 | 0.7465 | 0.6945 | 0.7037 | 0.6968 |
61
+ | 0.16 | 5.0 | 2485 | 2.0667 | 0.7465 | 0.6890 | 0.6827 | 0.6855 |
62
+ | 0.0945 | 6.0 | 2982 | 2.0120 | 0.7565 | 0.7091 | 0.7159 | 0.7103 |
63
+ | 0.0802 | 7.0 | 3479 | 2.2426 | 0.7686 | 0.7253 | 0.7065 | 0.7088 |
64
+ | 0.059 | 8.0 | 3976 | 2.3472 | 0.7425 | 0.6844 | 0.6881 | 0.6861 |
65
+ | 0.041 | 9.0 | 4473 | 2.4801 | 0.7666 | 0.7258 | 0.7144 | 0.7145 |
66
+ | 0.0307 | 10.0 | 4970 | 2.6317 | 0.7545 | 0.7102 | 0.7021 | 0.7019 |
67
+ | 0.0471 | 11.0 | 5467 | 2.4626 | 0.7364 | 0.6836 | 0.6780 | 0.6788 |
68
+ | 0.0282 | 12.0 | 5964 | 2.3949 | 0.7586 | 0.7067 | 0.7108 | 0.7087 |
69
+ | 0.0267 | 13.0 | 6461 | 2.4750 | 0.7465 | 0.6938 | 0.6921 | 0.6921 |
70
+ | 0.0274 | 14.0 | 6958 | 2.5942 | 0.7565 | 0.7022 | 0.7062 | 0.7039 |
71
+ | 0.0212 | 15.0 | 7455 | 2.6728 | 0.7404 | 0.6851 | 0.6893 | 0.6867 |
72
+ | 0.026 | 16.0 | 7952 | 2.6683 | 0.7565 | 0.7064 | 0.7122 | 0.7085 |
73
+ | 0.0175 | 17.0 | 8449 | 2.6646 | 0.7505 | 0.7030 | 0.7087 | 0.7039 |
74
+ | 0.0126 | 18.0 | 8946 | 2.6948 | 0.7565 | 0.7021 | 0.7039 | 0.7030 |
75
+ | 0.0065 | 19.0 | 9443 | 2.6984 | 0.7565 | 0.7045 | 0.7064 | 0.7050 |
76
+ | 0.0103 | 20.0 | 9940 | 2.6968 | 0.7565 | 0.7045 | 0.7064 | 0.7050 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.10.1+cu111
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1