Commit
•
09b7d2f
0
Parent(s):
Duplicate from michiyasunaga/BioLinkBERT-large
Browse filesCo-authored-by: Michihiro Yasunaga <[email protected]>
- .gitattributes +27 -0
- README.md +87 -0
- config.json +23 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
datasets:
|
5 |
+
- pubmed
|
6 |
+
tags:
|
7 |
+
- bert
|
8 |
+
- exbert
|
9 |
+
- linkbert
|
10 |
+
- biolinkbert
|
11 |
+
- feature-extraction
|
12 |
+
- fill-mask
|
13 |
+
- question-answering
|
14 |
+
- text-classification
|
15 |
+
- token-classification
|
16 |
+
widget:
|
17 |
+
- text: Sunitinib is a tyrosine kinase inhibitor
|
18 |
+
duplicated_from: michiyasunaga/BioLinkBERT-large
|
19 |
+
---
|
20 |
+
|
21 |
+
## BioLinkBERT-large
|
22 |
+
|
23 |
+
BioLinkBERT-large model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT).
|
24 |
+
|
25 |
+
This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA).
|
26 |
+
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document.
|
31 |
+
|
32 |
+
LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval).
|
33 |
+
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification.
|
38 |
+
You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text).
|
39 |
+
|
40 |
+
|
41 |
+
### How to use
|
42 |
+
|
43 |
+
To use the model to get the features of a given text in PyTorch:
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, AutoModel
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large')
|
48 |
+
model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large')
|
49 |
+
inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt")
|
50 |
+
outputs = model(**inputs)
|
51 |
+
last_hidden_states = outputs.last_hidden_state
|
52 |
+
```
|
53 |
+
|
54 |
+
For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases.
|
55 |
+
|
56 |
+
|
57 |
+
## Evaluation results
|
58 |
+
|
59 |
+
When fine-tuned on downstream tasks, LinkBERT achieves the following results.
|
60 |
+
|
61 |
+
**Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art.
|
62 |
+
|
63 |
+
| | BLURB score | PubMedQA | BioASQ | MedQA-USMLE |
|
64 |
+
| ---------------------- | -------- | -------- | ------- | -------- |
|
65 |
+
| PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 |
|
66 |
+
| **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** |
|
67 |
+
| **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** |
|
68 |
+
|
69 |
+
| | MMLU-professional medicine |
|
70 |
+
| ---------------------- | -------- |
|
71 |
+
| GPT-3 (175 params) | 38.7 |
|
72 |
+
| UnifiedQA (11B params) | 43.2 |
|
73 |
+
| **BioLinkBERT-large (340M params)** | **50.7** |
|
74 |
+
|
75 |
+
|
76 |
+
## Citation
|
77 |
+
|
78 |
+
If you find LinkBERT useful in your project, please cite the following:
|
79 |
+
|
80 |
+
```bibtex
|
81 |
+
@InProceedings{yasunaga2022linkbert,
|
82 |
+
author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
|
83 |
+
title = {LinkBERT: Pretraining Language Models with Document Links},
|
84 |
+
year = {2022},
|
85 |
+
booktitle = {Association for Computational Linguistics (ACL)},
|
86 |
+
}
|
87 |
+
```
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"gradient_checkpointing": false,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 4096,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 24,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"transformers_version": "4.9.0",
|
20 |
+
"type_vocab_size": 2,
|
21 |
+
"use_cache": true,
|
22 |
+
"vocab_size": 28895
|
23 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fed75e5716547b54198d4dd123e7a3f3c64a82e1172b3492a11deebd6ab4cd4d
|
3 |
+
size 1334073393
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|