Upload 2 files
Browse files- configuration_megatron_gpt.py +172 -0
- modeling_megatron_gpt.py +1146 -0
configuration_megatron_gpt.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementation in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Nemo Framework
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" MegatronGPT model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
class MegatronGPTConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`MegatronGPTModel`]. It is used to instantiate an
|
31 |
+
MegatronGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
32 |
+
with the defaults will yield a similar configuration to that of the MegatronGPT 1.4B parameter architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
39 |
+
Vocabulary size of the MegatronGPT model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`MegatronGPTModel`].
|
41 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
42 |
+
Dimension of the encoder layers and the pooler layer.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
46 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
48 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
50 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
51 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
52 |
+
bias (`bool`, *optional*, defaults to True)
|
53 |
+
Whether or not to include a bias in every linear layer
|
54 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
55 |
+
percentage of hidden dimensions to allocate to rotary embeddings
|
56 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
57 |
+
base for computing rotary embeddings frequency
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio probability of the attention score.
|
60 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
|
62 |
+
hidden states.
|
63 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
64 |
+
Argument used when doing token classification, used in the model [`MegatronGPTForTokenClassification`].
|
65 |
+
The dropout ratio for the hidden layer.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
67 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
68 |
+
just in case (e.g., 512 or 1024 or 2048).
|
69 |
+
normalize_attention_scores (`bool`, *optional*, defaults to `True`)
|
70 |
+
Whether to scale the output Q * K^T by 1 / sqrt(hidden_size_per_head).
|
71 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
74 |
+
The epsilon used by the layer normalization layers.
|
75 |
+
normalization (`string`, *optional*, defaults to `layernorm1p`)
|
76 |
+
The type of normalization to use for the LayerNorm layers, either `layernorm` or `layernorm1p`
|
77 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
79 |
+
relevant if `config.is_decoder=True`.
|
80 |
+
self_attention_relative_position_bias (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether to calculate and apply the relative position bias within the attention function.
|
82 |
+
If this is False, then model.generate will require you to calculate the triangular attention
|
83 |
+
mask and pass it through in the attention mask.
|
84 |
+
rope_scaling (`Dict`, *optional*):
|
85 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
|
86 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
87 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
88 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
89 |
+
these scaling strategies behave:
|
90 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
91 |
+
experimental feature, subject to breaking API changes in future versions.
|
92 |
+
|
93 |
+
"""
|
94 |
+
model_type = "megatron_gpt"
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_size=56064,
|
99 |
+
hidden_size=2048,
|
100 |
+
num_hidden_layers=24,
|
101 |
+
num_attention_heads=16,
|
102 |
+
intermediate_size=5440,
|
103 |
+
hidden_act="fast-swiglu",
|
104 |
+
bias=True,
|
105 |
+
rotary_pct=0.5,
|
106 |
+
rotary_emb_base=10000,
|
107 |
+
attention_dropout=0.0,
|
108 |
+
hidden_dropout=0.0,
|
109 |
+
classifier_dropout=0.0,
|
110 |
+
normalize_attention_scores=True,
|
111 |
+
max_position_embeddings=2048,
|
112 |
+
initializer_range=0.01,
|
113 |
+
layer_norm_eps=1e-5,
|
114 |
+
normalization='layernorm1p',
|
115 |
+
use_cache=True,
|
116 |
+
self_attention_relative_position_bias=True,
|
117 |
+
bos_token_id=0,
|
118 |
+
eos_token_id=2,
|
119 |
+
tie_word_embeddings=False,
|
120 |
+
rope_scaling=None,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
124 |
+
self.vocab_size = vocab_size
|
125 |
+
self.max_position_embeddings = max_position_embeddings
|
126 |
+
self.hidden_size = hidden_size
|
127 |
+
self.num_hidden_layers = num_hidden_layers
|
128 |
+
self.num_attention_heads = num_attention_heads
|
129 |
+
self.intermediate_size = intermediate_size
|
130 |
+
self.hidden_act = hidden_act
|
131 |
+
self.bias = bias
|
132 |
+
self.rotary_pct = rotary_pct
|
133 |
+
self.rotary_emb_base = rotary_emb_base
|
134 |
+
self.attention_dropout = attention_dropout
|
135 |
+
self.hidden_dropout = hidden_dropout
|
136 |
+
self.classifier_dropout = classifier_dropout
|
137 |
+
self.normalize_attention_scores = normalize_attention_scores
|
138 |
+
self.initializer_range = initializer_range
|
139 |
+
self.layer_norm_eps = layer_norm_eps
|
140 |
+
self.normalization = normalization
|
141 |
+
self.use_cache = use_cache
|
142 |
+
self.self_attention_relative_position_bias = self_attention_relative_position_bias
|
143 |
+
self.tie_word_embeddings = tie_word_embeddings
|
144 |
+
self.rope_scaling = rope_scaling
|
145 |
+
self._rope_scaling_validation()
|
146 |
+
|
147 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
148 |
+
raise ValueError(
|
149 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
|
150 |
+
)
|
151 |
+
|
152 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
153 |
+
def _rope_scaling_validation(self):
|
154 |
+
"""
|
155 |
+
Validate the `rope_scaling` configuration.
|
156 |
+
"""
|
157 |
+
if self.rope_scaling is None:
|
158 |
+
return
|
159 |
+
|
160 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
161 |
+
raise ValueError(
|
162 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
163 |
+
f"got {self.rope_scaling}"
|
164 |
+
)
|
165 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
166 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
167 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
168 |
+
raise ValueError(
|
169 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
170 |
+
)
|
171 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
172 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
modeling_megatron_gpt.py
ADDED
@@ -0,0 +1,1146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementation in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Nemo Framework
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
""" PyTorch MegatronGPT model."""
|
22 |
+
|
23 |
+
from typing import Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.file_utils import (
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutputWithPast,
|
38 |
+
CausalLMOutputWithPast,
|
39 |
+
QuestionAnsweringModelOutput,
|
40 |
+
SequenceClassifierOutputWithPast,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.utils import logging
|
45 |
+
# try to load using a relative path, but if it fails try loading it directly
|
46 |
+
try:
|
47 |
+
from .configuration_megatron_gpt import MegatronGPTConfig
|
48 |
+
except:
|
49 |
+
from configuration_megatron_gpt import MegatronGPTConfig
|
50 |
+
|
51 |
+
|
52 |
+
def get_activation(act):
|
53 |
+
if act in ["gelu", "geglu", "fast-geglu"]:
|
54 |
+
act = 'gelu'
|
55 |
+
elif act in ["reglu", "fast-reglu"]:
|
56 |
+
act = 'relu'
|
57 |
+
elif act in ["swiglu", "fast-swiglu"]:
|
58 |
+
act = 'silu'
|
59 |
+
return ACT2FN[act]
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
_CONFIG_FOR_DOC = "MegatronGPTConfig"
|
64 |
+
|
65 |
+
class MegatronGPTPreTrainedModel(PreTrainedModel):
|
66 |
+
"""
|
67 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
68 |
+
models.
|
69 |
+
"""
|
70 |
+
|
71 |
+
config_class = MegatronGPTConfig
|
72 |
+
base_model_prefix = "megatron_gpt"
|
73 |
+
supports_gradient_checkpointing = True
|
74 |
+
_no_split_modules = ["MegatronGPTLayer"]
|
75 |
+
_skip_keys_device_placement = "past_key_values"
|
76 |
+
|
77 |
+
def _init_weights(self, module):
|
78 |
+
"""Initialize the weights"""
|
79 |
+
if isinstance(module, nn.Linear):
|
80 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
81 |
+
if module.bias is not None:
|
82 |
+
module.bias.data.zero_()
|
83 |
+
elif isinstance(module, nn.Embedding):
|
84 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
85 |
+
if module.padding_idx is not None:
|
86 |
+
module.weight.data[module.padding_idx].zero_()
|
87 |
+
elif isinstance(module, nn.LayerNorm):
|
88 |
+
module.bias.data.zero_()
|
89 |
+
module.weight.data.fill_(1.0)
|
90 |
+
|
91 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
92 |
+
if isinstance(module, MegatronGPTModel):
|
93 |
+
module.gradient_checkpointing = value
|
94 |
+
|
95 |
+
|
96 |
+
class MegatronGPTAttention(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.self_attention_relative_position_bias = config.self_attention_relative_position_bias
|
101 |
+
self.num_attention_heads = config.num_attention_heads
|
102 |
+
self.hidden_size = config.hidden_size
|
103 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
104 |
+
raise ValueError(
|
105 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
|
106 |
+
)
|
107 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
108 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
109 |
+
self._init_bias(config.max_position_embeddings)
|
110 |
+
|
111 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
112 |
+
self._init_rope()
|
113 |
+
|
114 |
+
self.register_buffer(
|
115 |
+
"norm_factor",
|
116 |
+
torch.sqrt(torch.tensor(self.head_size if config.normalize_attention_scores else 1.0, dtype=torch.float32)).to(torch.get_default_dtype()),
|
117 |
+
persistent=False,
|
118 |
+
)
|
119 |
+
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias)
|
120 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias)
|
121 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
122 |
+
|
123 |
+
def _init_bias(self, max_positions, device=None):
|
124 |
+
self.register_buffer(
|
125 |
+
"bias",
|
126 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
127 |
+
1, 1, max_positions, max_positions
|
128 |
+
),
|
129 |
+
persistent=False,
|
130 |
+
)
|
131 |
+
if device is not None:
|
132 |
+
self.bias = self.bias.to(device)
|
133 |
+
|
134 |
+
def _init_rope(self):
|
135 |
+
if self.config.rope_scaling is None:
|
136 |
+
self.rotary_emb = MegatronGPTRotaryEmbedding(
|
137 |
+
self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
scaling_type = self.config.rope_scaling["type"]
|
141 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
142 |
+
if scaling_type == "linear":
|
143 |
+
self.rotary_emb = MegatronGPTLinearScalingRotaryEmbedding(
|
144 |
+
self.rotary_ndims,
|
145 |
+
self.config.max_position_embeddings,
|
146 |
+
base=self.config.rotary_emb_base,
|
147 |
+
scaling_factor=scaling_factor,
|
148 |
+
)
|
149 |
+
elif scaling_type == "dynamic":
|
150 |
+
self.rotary_emb = MegatronGPTDynamicNTKScalingRotaryEmbedding(
|
151 |
+
self.rotary_ndims,
|
152 |
+
self.config.max_position_embeddings,
|
153 |
+
base=self.config.rotary_emb_base,
|
154 |
+
scaling_factor=scaling_factor,
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
158 |
+
|
159 |
+
def forward(
|
160 |
+
self,
|
161 |
+
hidden_states: torch.FloatTensor,
|
162 |
+
attention_mask: torch.FloatTensor,
|
163 |
+
position_ids: torch.LongTensor,
|
164 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
165 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
166 |
+
use_cache: Optional[bool] = False,
|
167 |
+
output_attentions: Optional[bool] = False,
|
168 |
+
):
|
169 |
+
has_layer_past = layer_past is not None
|
170 |
+
|
171 |
+
# Compute QKV
|
172 |
+
# Attention heads [batch, seq_len, hidden_size]
|
173 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
174 |
+
qkv = self.query_key_value(hidden_states)
|
175 |
+
|
176 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
177 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
178 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
179 |
+
qkv = qkv.view(*new_qkv_shape)
|
180 |
+
|
181 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
182 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
183 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
184 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
185 |
+
|
186 |
+
# Compute rotary embeddings on rotary_ndims
|
187 |
+
query_rot = query[..., : self.rotary_ndims]
|
188 |
+
query_pass = query[..., self.rotary_ndims :]
|
189 |
+
key_rot = key[..., : self.rotary_ndims]
|
190 |
+
key_pass = key[..., self.rotary_ndims :]
|
191 |
+
|
192 |
+
# Compute token offset for rotary embeddings (when decoding)
|
193 |
+
seq_len = key.shape[-2]
|
194 |
+
if has_layer_past:
|
195 |
+
seq_len += layer_past[0].shape[-2]
|
196 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
197 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
198 |
+
query = torch.cat((query, query_pass), dim=-1)
|
199 |
+
key = torch.cat((key, key_pass), dim=-1)
|
200 |
+
|
201 |
+
# Cache QKV values
|
202 |
+
if has_layer_past:
|
203 |
+
past_key = layer_past[0]
|
204 |
+
past_value = layer_past[1]
|
205 |
+
key = torch.cat((past_key, key), dim=-2)
|
206 |
+
value = torch.cat((past_value, value), dim=-2)
|
207 |
+
present = (key, value) if use_cache else None
|
208 |
+
|
209 |
+
# Compute attention
|
210 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
211 |
+
|
212 |
+
# Reshape outputs
|
213 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
214 |
+
attn_output = self.dense(attn_output)
|
215 |
+
|
216 |
+
outputs = (attn_output, present)
|
217 |
+
if output_attentions:
|
218 |
+
outputs += (attn_weights,)
|
219 |
+
|
220 |
+
return outputs
|
221 |
+
|
222 |
+
@classmethod
|
223 |
+
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
224 |
+
"""
|
225 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
226 |
+
"""
|
227 |
+
# tensor: [bs, seq_len, hidden_size]
|
228 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
229 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
230 |
+
tensor = tensor.view(new_shape)
|
231 |
+
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
232 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
233 |
+
return tensor
|
234 |
+
|
235 |
+
@classmethod
|
236 |
+
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
237 |
+
"""
|
238 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
239 |
+
"""
|
240 |
+
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
241 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
242 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
243 |
+
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
244 |
+
# -> [bs, seq_len, hidden_size]
|
245 |
+
return tensor
|
246 |
+
|
247 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
248 |
+
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
249 |
+
# compute causal mask from causal mask buffer
|
250 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
251 |
+
key_length = key.size(-2)
|
252 |
+
|
253 |
+
# dynamically increase the causal mask with the key length, if needed.
|
254 |
+
if key_length > self.bias.shape[-1]:
|
255 |
+
self._init_bias(key_length, device=key.device)
|
256 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
257 |
+
|
258 |
+
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
259 |
+
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
260 |
+
attn_scores = torch.zeros(
|
261 |
+
batch_size * num_attention_heads,
|
262 |
+
query_length,
|
263 |
+
key_length,
|
264 |
+
dtype=query.dtype,
|
265 |
+
device=key.device,
|
266 |
+
)
|
267 |
+
attn_scores = torch.baddbmm(
|
268 |
+
attn_scores,
|
269 |
+
query,
|
270 |
+
key.transpose(1, 2),
|
271 |
+
beta=0.0,
|
272 |
+
alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
|
273 |
+
)
|
274 |
+
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
275 |
+
|
276 |
+
if self.self_attention_relative_position_bias:
|
277 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
278 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
279 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
280 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
|
281 |
+
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
282 |
+
|
283 |
+
if attention_mask is not None:
|
284 |
+
# Apply the attention mask
|
285 |
+
attn_scores = attn_scores + attention_mask
|
286 |
+
|
287 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
288 |
+
attn_weights = attn_weights.to(value.dtype)
|
289 |
+
|
290 |
+
# Mask heads if we want to
|
291 |
+
if head_mask is not None:
|
292 |
+
attn_weights = attn_weights * head_mask
|
293 |
+
|
294 |
+
attn_weights = self.attention_dropout(attn_weights)
|
295 |
+
|
296 |
+
attn_output = torch.matmul(attn_weights, value)
|
297 |
+
return attn_output, attn_weights
|
298 |
+
|
299 |
+
|
300 |
+
def attention_mask_func(attention_scores, ltor_mask):
|
301 |
+
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
|
302 |
+
return attention_scores
|
303 |
+
|
304 |
+
|
305 |
+
class MegatronGPTRotaryEmbedding(torch.nn.Module):
|
306 |
+
def __init__(self, dim, max_position_embeddings, base=10000, device=None):
|
307 |
+
super().__init__()
|
308 |
+
|
309 |
+
self.dim = dim
|
310 |
+
self.max_position_embeddings = max_position_embeddings
|
311 |
+
self.base = base
|
312 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
313 |
+
self.register_buffer("inv_freq", inv_freq)
|
314 |
+
|
315 |
+
# Build here to make `torch.jit.trace` work.
|
316 |
+
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=self.inv_freq.device)
|
317 |
+
|
318 |
+
def _set_cos_sin_cache(self, seq_len, device):
|
319 |
+
self.max_seq_len_cached = seq_len
|
320 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
321 |
+
|
322 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
323 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
324 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
325 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
326 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
327 |
+
|
328 |
+
def forward(self, x, seq_len=None):
|
329 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
330 |
+
if seq_len > self.max_seq_len_cached:
|
331 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device)
|
332 |
+
return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device)
|
333 |
+
|
334 |
+
|
335 |
+
class MegatronGPTLinearScalingRotaryEmbedding(MegatronGPTRotaryEmbedding):
|
336 |
+
"""MegatronGPTRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
337 |
+
|
338 |
+
def __init__(self, dim, max_position_embeddings, base=10000, device=None, scaling_factor=1.0):
|
339 |
+
self.scaling_factor = scaling_factor
|
340 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
341 |
+
|
342 |
+
def _set_cos_sin_cache(self, seq_len, device):
|
343 |
+
self.max_seq_len_cached = seq_len
|
344 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
345 |
+
t = t / self.scaling_factor
|
346 |
+
|
347 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
348 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
349 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
350 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
351 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
352 |
+
|
353 |
+
|
354 |
+
class MegatronGPTDynamicNTKScalingRotaryEmbedding(MegatronGPTRotaryEmbedding):
|
355 |
+
"""MegatronGPTRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
356 |
+
|
357 |
+
def __init__(self, dim, max_position_embeddings, base=10000, device=None, scaling_factor=1.0):
|
358 |
+
self.scaling_factor = scaling_factor
|
359 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
360 |
+
|
361 |
+
def _set_cos_sin_cache(self, seq_len, device):
|
362 |
+
self.max_seq_len_cached = seq_len
|
363 |
+
|
364 |
+
if seq_len > self.max_position_embeddings:
|
365 |
+
base = self.base * (
|
366 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
367 |
+
) ** (self.dim / (self.dim - 2))
|
368 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
369 |
+
self.register_buffer("inv_freq", inv_freq)
|
370 |
+
|
371 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
372 |
+
|
373 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
374 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
375 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
376 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
377 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
378 |
+
|
379 |
+
|
380 |
+
def rotate_half(x):
|
381 |
+
"""Rotates half the hidden dims of the input."""
|
382 |
+
x1 = x[..., : x.shape[-1] // 2]
|
383 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
384 |
+
return torch.cat((-x2, x1), dim=-1)
|
385 |
+
|
386 |
+
|
387 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
388 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
389 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
390 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
391 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
392 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
393 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
394 |
+
return q_embed, k_embed
|
395 |
+
|
396 |
+
|
397 |
+
class MegatronGPTMLP(nn.Module):
|
398 |
+
def __init__(self, config):
|
399 |
+
super().__init__()
|
400 |
+
self.fast_glu_activation = config.hidden_act in ['fast-geglu', 'fast-swiglu', 'fast-reglu']
|
401 |
+
self.glu_activation_family = self.fast_glu_activation or config.hidden_act in ['geglu','reglu','swiglu']
|
402 |
+
|
403 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size * (2 if self.fast_glu_activation else 1), bias=config.bias)
|
404 |
+
if config.hidden_act in ['geglu', 'reglu', 'swiglu']:
|
405 |
+
self.dense_h_to_4h_2 = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.bias)
|
406 |
+
|
407 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.bias)
|
408 |
+
self.act = get_activation(config.hidden_act)
|
409 |
+
|
410 |
+
def forward(self, hidden_states):
|
411 |
+
intermediate_states = self.dense_h_to_4h(hidden_states)
|
412 |
+
if self.glu_activation_family:
|
413 |
+
if self.fast_glu_activation:
|
414 |
+
intermediate_states, intermediate_states_2 = torch.chunk(intermediate_states, 2, dim=-1)
|
415 |
+
else:
|
416 |
+
intermediate_states_2 = self.dense_h_to_4h_2(hidden_states)
|
417 |
+
|
418 |
+
hidden_states = self.act(intermediate_states) * intermediate_states_2
|
419 |
+
else:
|
420 |
+
hidden_states = self.act(intermediate_states)
|
421 |
+
hidden_states = self.dense_4h_to_h(hidden_states)
|
422 |
+
return hidden_states
|
423 |
+
|
424 |
+
|
425 |
+
class MegatronGPTLayer(nn.Module):
|
426 |
+
def __init__(self, config, layer_idx):
|
427 |
+
super().__init__()
|
428 |
+
self.input_layernorm = MegatronGPTLPLayerNorm(config.normalization, config.hidden_size, eps=config.layer_norm_eps)
|
429 |
+
self.post_attention_layernorm = MegatronGPTLPLayerNorm(config.normalization, config.hidden_size, eps=config.layer_norm_eps)
|
430 |
+
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
|
431 |
+
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
|
432 |
+
self.self_attention = MegatronGPTAttention(config)
|
433 |
+
self.mlp = MegatronGPTMLP(config)
|
434 |
+
self.layer_idx = layer_idx
|
435 |
+
|
436 |
+
def forward(
|
437 |
+
self,
|
438 |
+
hidden_states: Optional[torch.FloatTensor],
|
439 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
440 |
+
position_ids: Optional[torch.LongTensor] = None,
|
441 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
442 |
+
use_cache: Optional[bool] = False,
|
443 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
444 |
+
output_attentions: Optional[bool] = False,
|
445 |
+
):
|
446 |
+
attention_layer_outputs = self.self_attention(
|
447 |
+
self.input_layernorm(hidden_states),
|
448 |
+
attention_mask=attention_mask,
|
449 |
+
position_ids=position_ids,
|
450 |
+
layer_past=layer_past,
|
451 |
+
head_mask=head_mask,
|
452 |
+
use_cache=use_cache,
|
453 |
+
output_attentions=output_attentions,
|
454 |
+
)
|
455 |
+
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
456 |
+
attn_output = self.post_attention_dropout(attn_output)
|
457 |
+
|
458 |
+
# pseudocode:
|
459 |
+
# x = x + attn(ln1(x))
|
460 |
+
# x = x + mlp(ln2(x))
|
461 |
+
attn_output = attn_output + hidden_states
|
462 |
+
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
463 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
464 |
+
hidden_states = mlp_output + attn_output
|
465 |
+
|
466 |
+
outputs = attention_layer_outputs[1:]
|
467 |
+
if use_cache:
|
468 |
+
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
|
469 |
+
else:
|
470 |
+
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
471 |
+
|
472 |
+
return outputs
|
473 |
+
|
474 |
+
class MegatronGPTLPLayerNorm(torch.nn.LayerNorm):
|
475 |
+
def __init__(self, normalization, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
476 |
+
super().__init__(
|
477 |
+
normalized_shape=normalized_shape,
|
478 |
+
eps=eps,
|
479 |
+
elementwise_affine=elementwise_affine,
|
480 |
+
device=device,
|
481 |
+
dtype=dtype,
|
482 |
+
)
|
483 |
+
assert normalization in ['layernorm', 'layernorm1p']
|
484 |
+
self.normalization = normalization
|
485 |
+
|
486 |
+
def forward(self, x):
|
487 |
+
weight_bias = 1 if self.normalization == 'layernorm1p' else 0
|
488 |
+
return torch.nn.functional.layer_norm(
|
489 |
+
x, self.normalized_shape, self.weight + weight_bias, self.bias, self.eps
|
490 |
+
)
|
491 |
+
|
492 |
+
|
493 |
+
|
494 |
+
MEGATRON_GPT_START_DOCSTRING = r"""
|
495 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
496 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
497 |
+
behavior.
|
498 |
+
|
499 |
+
Parameters:
|
500 |
+
config ([`~MegatronGPTConfig`]): Model configuration class with all the parameters of the model.
|
501 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
502 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
503 |
+
"""
|
504 |
+
|
505 |
+
MEGATRON_GPT_INPUTS_DOCSTRING = r"""
|
506 |
+
Args:
|
507 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
508 |
+
Indices of input sequence tokens in the vocabulary.
|
509 |
+
|
510 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
511 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
512 |
+
|
513 |
+
[What are input IDs?](../glossary#input-ids)
|
514 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
515 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
516 |
+
|
517 |
+
- 1 for tokens that are **not masked**,
|
518 |
+
- 0 for tokens that are **masked**.
|
519 |
+
|
520 |
+
[What are attention masks?](../glossary#attention-mask)
|
521 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
522 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
523 |
+
config.n_positions - 1]`.
|
524 |
+
|
525 |
+
[What are position IDs?](../glossary#position-ids)
|
526 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
527 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
528 |
+
|
529 |
+
- 1 indicates the head is **not masked**,
|
530 |
+
- 0 indicates the head is **masked**.
|
531 |
+
|
532 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
533 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
534 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
535 |
+
model's internal embedding lookup matrix.
|
536 |
+
output_attentions (`bool`, *optional*):
|
537 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
538 |
+
tensors for more detail.
|
539 |
+
output_hidden_states (`bool`, *optional*):
|
540 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
541 |
+
more detail.
|
542 |
+
return_dict (`bool`, *optional*):
|
543 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
544 |
+
"""
|
545 |
+
|
546 |
+
|
547 |
+
@add_start_docstrings(
|
548 |
+
"The bare MegatronGPT Model transformer outputting raw hidden-states without any specific head on top.",
|
549 |
+
MEGATRON_GPT_START_DOCSTRING,
|
550 |
+
)
|
551 |
+
class MegatronGPTModel(MegatronGPTPreTrainedModel):
|
552 |
+
def __init__(self, config):
|
553 |
+
super().__init__(config)
|
554 |
+
self.config = config
|
555 |
+
|
556 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
557 |
+
self.emb_dropout = nn.Dropout(config.hidden_dropout)
|
558 |
+
self.layers = nn.ModuleList([MegatronGPTLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
559 |
+
self.final_layernorm = MegatronGPTLPLayerNorm(config.normalization, config.hidden_size, eps=config.layer_norm_eps)
|
560 |
+
|
561 |
+
self.gradient_checkpointing = False
|
562 |
+
|
563 |
+
# Initialize weights and apply final processing
|
564 |
+
self.post_init()
|
565 |
+
|
566 |
+
def get_input_embeddings(self):
|
567 |
+
return self.embed_in
|
568 |
+
|
569 |
+
def set_input_embeddings(self, value):
|
570 |
+
self.embed_in = value
|
571 |
+
|
572 |
+
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
573 |
+
def forward(
|
574 |
+
self,
|
575 |
+
input_ids: Optional[torch.LongTensor] = None,
|
576 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
577 |
+
position_ids: Optional[torch.LongTensor] = None,
|
578 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
579 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
580 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
581 |
+
use_cache: Optional[bool] = None,
|
582 |
+
output_attentions: Optional[bool] = None,
|
583 |
+
output_hidden_states: Optional[bool] = None,
|
584 |
+
return_dict: Optional[bool] = None,
|
585 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
586 |
+
r"""
|
587 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
588 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
589 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
590 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
591 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
592 |
+
use_cache (`bool`, *optional*):
|
593 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
594 |
+
`past_key_values`).
|
595 |
+
"""
|
596 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
597 |
+
output_hidden_states = (
|
598 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
599 |
+
)
|
600 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
601 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
602 |
+
|
603 |
+
if input_ids is not None and inputs_embeds is not None:
|
604 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
605 |
+
elif input_ids is not None:
|
606 |
+
input_shape = input_ids.size()
|
607 |
+
elif inputs_embeds is not None:
|
608 |
+
input_shape = inputs_embeds.size()[:-1]
|
609 |
+
else:
|
610 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
611 |
+
|
612 |
+
batch_size, seq_length = input_shape
|
613 |
+
|
614 |
+
if past_key_values is None:
|
615 |
+
past_length = 0
|
616 |
+
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
617 |
+
else:
|
618 |
+
past_length = past_key_values[0][0].size(-2)
|
619 |
+
|
620 |
+
if position_ids is None:
|
621 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
622 |
+
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
|
623 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
624 |
+
else:
|
625 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
626 |
+
|
627 |
+
# Attention mask.
|
628 |
+
if attention_mask is not None:
|
629 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
630 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
631 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
632 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
633 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
634 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
635 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
636 |
+
attention_mask = attention_mask[:, None, None, :]
|
637 |
+
|
638 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
639 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
640 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
641 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
642 |
+
# effectively the same as removing these entirely.
|
643 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
644 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
645 |
+
|
646 |
+
# Prepare head mask if needed
|
647 |
+
# 1.0 in head_mask indicate we keep the head
|
648 |
+
# attention_probs has shape bsz x n_heads x N x N
|
649 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
650 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
651 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
652 |
+
|
653 |
+
if inputs_embeds is None:
|
654 |
+
inputs_embeds = self.embed_in(input_ids)
|
655 |
+
|
656 |
+
hidden_states = self.emb_dropout(inputs_embeds)
|
657 |
+
|
658 |
+
if self.gradient_checkpointing and self.training:
|
659 |
+
if use_cache:
|
660 |
+
logger.warning(
|
661 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
662 |
+
)
|
663 |
+
use_cache = False
|
664 |
+
|
665 |
+
presents = () if use_cache else None
|
666 |
+
all_attentions = () if output_attentions else None
|
667 |
+
all_hidden_states = () if output_hidden_states else None
|
668 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
669 |
+
if output_hidden_states:
|
670 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
671 |
+
|
672 |
+
if self.gradient_checkpointing and self.training:
|
673 |
+
|
674 |
+
def create_custom_forward(module):
|
675 |
+
def custom_forward(*inputs):
|
676 |
+
# None for layer_past
|
677 |
+
return module(*inputs, use_cache, None, output_attentions)
|
678 |
+
|
679 |
+
return custom_forward
|
680 |
+
|
681 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
682 |
+
create_custom_forward(layer),
|
683 |
+
hidden_states,
|
684 |
+
attention_mask,
|
685 |
+
position_ids,
|
686 |
+
head_mask[i],
|
687 |
+
)
|
688 |
+
else:
|
689 |
+
outputs = layer(
|
690 |
+
hidden_states,
|
691 |
+
attention_mask=attention_mask,
|
692 |
+
position_ids=position_ids,
|
693 |
+
head_mask=head_mask[i],
|
694 |
+
layer_past=layer_past,
|
695 |
+
use_cache=use_cache,
|
696 |
+
output_attentions=output_attentions,
|
697 |
+
)
|
698 |
+
hidden_states = outputs[0]
|
699 |
+
if use_cache is True:
|
700 |
+
presents = presents + (outputs[1],)
|
701 |
+
if output_attentions:
|
702 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
703 |
+
|
704 |
+
hidden_states = self.final_layernorm(hidden_states)
|
705 |
+
# Add last hidden state
|
706 |
+
if output_hidden_states:
|
707 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
708 |
+
|
709 |
+
if not return_dict:
|
710 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
711 |
+
|
712 |
+
return BaseModelOutputWithPast(
|
713 |
+
last_hidden_state=hidden_states,
|
714 |
+
past_key_values=presents,
|
715 |
+
hidden_states=all_hidden_states,
|
716 |
+
attentions=all_attentions,
|
717 |
+
)
|
718 |
+
|
719 |
+
|
720 |
+
@add_start_docstrings(
|
721 |
+
"""MegatronGPT Model with a `language modeling` head on top for CLM fine-tuning.""", MEGATRON_GPT_START_DOCSTRING
|
722 |
+
)
|
723 |
+
class MegatronGPTForCausalLM(MegatronGPTPreTrainedModel):
|
724 |
+
_tied_weights_keys = ["embed_out.weight"]
|
725 |
+
|
726 |
+
def __init__(self, config):
|
727 |
+
super().__init__(config)
|
728 |
+
|
729 |
+
self.megatron_gpt = MegatronGPTModel(config)
|
730 |
+
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
731 |
+
|
732 |
+
# Initialize weights and apply final processing
|
733 |
+
self.post_init()
|
734 |
+
|
735 |
+
def get_output_embeddings(self):
|
736 |
+
return self.embed_out
|
737 |
+
|
738 |
+
def set_output_embeddings(self, new_embeddings):
|
739 |
+
self.embed_out = new_embeddings
|
740 |
+
|
741 |
+
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
742 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
743 |
+
def forward(
|
744 |
+
self,
|
745 |
+
input_ids: Optional[torch.LongTensor] = None,
|
746 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
747 |
+
position_ids: Optional[torch.LongTensor] = None,
|
748 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
749 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
750 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
751 |
+
labels: Optional[torch.LongTensor] = None,
|
752 |
+
use_cache: Optional[bool] = None,
|
753 |
+
output_attentions: Optional[bool] = None,
|
754 |
+
output_hidden_states: Optional[bool] = None,
|
755 |
+
return_dict: Optional[bool] = None,
|
756 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
757 |
+
r"""
|
758 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
759 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
760 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
761 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
762 |
+
only required when the model is used as a decoder in a Sequence to Sequence model.
|
763 |
+
|
764 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
765 |
+
`past_key_values` input) to speed up sequential decoding.
|
766 |
+
|
767 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
768 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
769 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
770 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
771 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
772 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
773 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
774 |
+
use_cache (`bool`, *optional*):
|
775 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
776 |
+
`past_key_values`).
|
777 |
+
|
778 |
+
Returns:
|
779 |
+
"""
|
780 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
781 |
+
|
782 |
+
outputs = self.megatron_gpt(
|
783 |
+
input_ids,
|
784 |
+
attention_mask=attention_mask,
|
785 |
+
position_ids=position_ids,
|
786 |
+
head_mask=head_mask,
|
787 |
+
inputs_embeds=inputs_embeds,
|
788 |
+
past_key_values=past_key_values,
|
789 |
+
use_cache=use_cache,
|
790 |
+
output_attentions=output_attentions,
|
791 |
+
output_hidden_states=output_hidden_states,
|
792 |
+
return_dict=return_dict,
|
793 |
+
)
|
794 |
+
|
795 |
+
hidden_states = outputs[0]
|
796 |
+
lm_logits = self.embed_out(hidden_states)
|
797 |
+
|
798 |
+
lm_loss = None
|
799 |
+
if labels is not None:
|
800 |
+
# move labels to correct device to enable model parallelism
|
801 |
+
labels = labels.to(lm_logits.device)
|
802 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
803 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
804 |
+
labels = labels[:, 1:].contiguous()
|
805 |
+
loss_fct = CrossEntropyLoss()
|
806 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
807 |
+
|
808 |
+
if not return_dict:
|
809 |
+
output = (lm_logits,) + outputs[1:]
|
810 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
811 |
+
|
812 |
+
return CausalLMOutputWithPast(
|
813 |
+
loss=lm_loss,
|
814 |
+
logits=lm_logits,
|
815 |
+
past_key_values=outputs.past_key_values,
|
816 |
+
hidden_states=outputs.hidden_states,
|
817 |
+
attentions=outputs.attentions,
|
818 |
+
)
|
819 |
+
|
820 |
+
def prepare_inputs_for_generation(
|
821 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
822 |
+
):
|
823 |
+
input_shape = input_ids.shape
|
824 |
+
|
825 |
+
# cut decoder_input_ids if past is used
|
826 |
+
if past_key_values and past_key_values[0] is not None:
|
827 |
+
input_ids = input_ids[:, -1:]
|
828 |
+
|
829 |
+
position_ids = kwargs.get("position_ids", None)
|
830 |
+
if attention_mask is not None and position_ids is None:
|
831 |
+
# create position_ids on the fly for batch generation
|
832 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
833 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
834 |
+
if past_key_values:
|
835 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
836 |
+
|
837 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
838 |
+
if attention_mask is None:
|
839 |
+
attention_mask = input_ids.new_ones(input_shape)
|
840 |
+
|
841 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
842 |
+
if inputs_embeds is not None and past_key_values is None:
|
843 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
844 |
+
else:
|
845 |
+
model_inputs = {"input_ids": input_ids}
|
846 |
+
|
847 |
+
model_inputs.update(
|
848 |
+
{
|
849 |
+
"attention_mask": attention_mask,
|
850 |
+
"past_key_values": past_key_values,
|
851 |
+
"position_ids": position_ids,
|
852 |
+
}
|
853 |
+
)
|
854 |
+
|
855 |
+
return model_inputs
|
856 |
+
|
857 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
858 |
+
reordered_past = ()
|
859 |
+
for layer_past in past_key_values:
|
860 |
+
reordered_past += (
|
861 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
|
862 |
+
)
|
863 |
+
return reordered_past
|
864 |
+
|
865 |
+
|
866 |
+
@add_start_docstrings(
|
867 |
+
"""
|
868 |
+
The MegatronGPT Model transformer with a sequence classification head on top (linear layer).
|
869 |
+
|
870 |
+
[`MegatronGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
871 |
+
(e.g. GPT-1) do.
|
872 |
+
|
873 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
874 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
875 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
876 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
877 |
+
each row of the batch).
|
878 |
+
""",
|
879 |
+
MEGATRON_GPT_START_DOCSTRING,
|
880 |
+
)
|
881 |
+
class MegatronGPTForSequenceClassification(MegatronGPTPreTrainedModel):
|
882 |
+
def __init__(self, config):
|
883 |
+
super().__init__(config)
|
884 |
+
self.num_labels = config.num_labels
|
885 |
+
self.megatron_gpt = MegatronGPTModel(config)
|
886 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
887 |
+
|
888 |
+
# Initialize weights and apply final processing
|
889 |
+
self.post_init()
|
890 |
+
|
891 |
+
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING)
|
892 |
+
def forward(
|
893 |
+
self,
|
894 |
+
input_ids: Optional[torch.LongTensor] = None,
|
895 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
896 |
+
position_ids: Optional[torch.LongTensor] = None,
|
897 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
898 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
899 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
900 |
+
labels: Optional[torch.LongTensor] = None,
|
901 |
+
use_cache: Optional[bool] = None,
|
902 |
+
output_attentions: Optional[bool] = None,
|
903 |
+
output_hidden_states: Optional[bool] = None,
|
904 |
+
return_dict: Optional[bool] = None,
|
905 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
906 |
+
r"""
|
907 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
908 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
909 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
910 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
911 |
+
"""
|
912 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
913 |
+
|
914 |
+
outputs = self.megatron_gpt(
|
915 |
+
input_ids,
|
916 |
+
attention_mask=attention_mask,
|
917 |
+
position_ids=position_ids,
|
918 |
+
head_mask=head_mask,
|
919 |
+
inputs_embeds=inputs_embeds,
|
920 |
+
past_key_values=past_key_values,
|
921 |
+
use_cache=use_cache,
|
922 |
+
output_attentions=output_attentions,
|
923 |
+
output_hidden_states=output_hidden_states,
|
924 |
+
return_dict=return_dict,
|
925 |
+
)
|
926 |
+
hidden_states = outputs[0]
|
927 |
+
logits = self.score(hidden_states)
|
928 |
+
|
929 |
+
if input_ids is not None:
|
930 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
931 |
+
else:
|
932 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
933 |
+
|
934 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
935 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
936 |
+
if self.config.pad_token_id is None:
|
937 |
+
sequence_lengths = -1
|
938 |
+
else:
|
939 |
+
if input_ids is not None:
|
940 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
941 |
+
else:
|
942 |
+
sequence_lengths = -1
|
943 |
+
logger.warning(
|
944 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
945 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
946 |
+
)
|
947 |
+
|
948 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
949 |
+
|
950 |
+
loss = None
|
951 |
+
if labels is not None:
|
952 |
+
labels = labels.to(logits.device)
|
953 |
+
if self.config.problem_type is None:
|
954 |
+
if self.num_labels == 1:
|
955 |
+
self.config.problem_type = "regression"
|
956 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
957 |
+
self.config.problem_type = "single_label_classification"
|
958 |
+
else:
|
959 |
+
self.config.problem_type = "multi_label_classification"
|
960 |
+
|
961 |
+
if self.config.problem_type == "regression":
|
962 |
+
loss_fct = MSELoss()
|
963 |
+
if self.num_labels == 1:
|
964 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
965 |
+
else:
|
966 |
+
loss = loss_fct(pooled_logits, labels)
|
967 |
+
elif self.config.problem_type == "single_label_classification":
|
968 |
+
loss_fct = CrossEntropyLoss()
|
969 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
970 |
+
elif self.config.problem_type == "multi_label_classification":
|
971 |
+
loss_fct = BCEWithLogitsLoss()
|
972 |
+
loss = loss_fct(pooled_logits, labels)
|
973 |
+
if not return_dict:
|
974 |
+
output = (pooled_logits,) + outputs[1:]
|
975 |
+
return ((loss,) + output) if loss is not None else output
|
976 |
+
|
977 |
+
return SequenceClassifierOutputWithPast(
|
978 |
+
loss=loss,
|
979 |
+
logits=pooled_logits,
|
980 |
+
past_key_values=outputs.past_key_values,
|
981 |
+
hidden_states=outputs.hidden_states,
|
982 |
+
attentions=outputs.attentions,
|
983 |
+
)
|
984 |
+
|
985 |
+
|
986 |
+
class MegatronGPTForTokenClassification(MegatronGPTPreTrainedModel):
|
987 |
+
def __init__(self, config):
|
988 |
+
super().__init__(config)
|
989 |
+
self.num_labels = config.num_labels
|
990 |
+
|
991 |
+
self.megatron_gpt = MegatronGPTModel(config)
|
992 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
993 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
994 |
+
|
995 |
+
# Initialize weights and apply final processing
|
996 |
+
self.post_init()
|
997 |
+
|
998 |
+
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING)
|
999 |
+
def forward(
|
1000 |
+
self,
|
1001 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1002 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1003 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1004 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1005 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1006 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1007 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1008 |
+
labels: Optional[torch.LongTensor] = None,
|
1009 |
+
use_cache: Optional[bool] = None,
|
1010 |
+
output_attentions: Optional[bool] = None,
|
1011 |
+
output_hidden_states: Optional[bool] = None,
|
1012 |
+
return_dict: Optional[bool] = None,
|
1013 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1014 |
+
r"""
|
1015 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1016 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1017 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1018 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1019 |
+
"""
|
1020 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1021 |
+
|
1022 |
+
outputs = self.megatron_gpt(
|
1023 |
+
input_ids,
|
1024 |
+
past_key_values=past_key_values,
|
1025 |
+
attention_mask=attention_mask,
|
1026 |
+
position_ids=position_ids,
|
1027 |
+
head_mask=head_mask,
|
1028 |
+
inputs_embeds=inputs_embeds,
|
1029 |
+
use_cache=use_cache,
|
1030 |
+
output_attentions=output_attentions,
|
1031 |
+
output_hidden_states=output_hidden_states,
|
1032 |
+
return_dict=return_dict,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
hidden_states = outputs[0]
|
1036 |
+
hidden_states = self.dropout(hidden_states)
|
1037 |
+
logits = self.classifier(hidden_states)
|
1038 |
+
|
1039 |
+
loss = None
|
1040 |
+
if labels is not None:
|
1041 |
+
labels = labels.to(logits.device)
|
1042 |
+
loss_fct = CrossEntropyLoss()
|
1043 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1044 |
+
|
1045 |
+
if not return_dict:
|
1046 |
+
output = (logits,) + outputs[2:]
|
1047 |
+
return ((loss,) + output) if loss is not None else output
|
1048 |
+
|
1049 |
+
return TokenClassifierOutput(
|
1050 |
+
loss=loss,
|
1051 |
+
logits=logits,
|
1052 |
+
hidden_states=outputs.hidden_states,
|
1053 |
+
attentions=outputs.attentions,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
|
1057 |
+
@add_start_docstrings(
|
1058 |
+
"""
|
1059 |
+
The Megatron-GPT Model transformer with a span classification head on top for extractive question-answering tasks like
|
1060 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1061 |
+
""",
|
1062 |
+
MEGATRON_GPT_START_DOCSTRING,
|
1063 |
+
)
|
1064 |
+
class MegatronGPTForQuestionAnswering(MegatronGPTPreTrainedModel):
|
1065 |
+
def __init__(self, config):
|
1066 |
+
super().__init__(config)
|
1067 |
+
self.num_labels = config.num_labels
|
1068 |
+
self.megatron_gpt = MegatronGPTModel(config)
|
1069 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1070 |
+
|
1071 |
+
# Initialize weights and apply final processing
|
1072 |
+
self.post_init()
|
1073 |
+
|
1074 |
+
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1075 |
+
def forward(
|
1076 |
+
self,
|
1077 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1078 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1079 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1080 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1081 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1082 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1083 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1084 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1085 |
+
output_attentions: Optional[bool] = None,
|
1086 |
+
output_hidden_states: Optional[bool] = None,
|
1087 |
+
return_dict: Optional[bool] = None,
|
1088 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1089 |
+
r"""
|
1090 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1091 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1092 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1093 |
+
are not taken into account for computing the loss.
|
1094 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1095 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1096 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1097 |
+
are not taken into account for computing the loss.
|
1098 |
+
"""
|
1099 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1100 |
+
|
1101 |
+
outputs = self.megatron_gpt(
|
1102 |
+
input_ids,
|
1103 |
+
attention_mask=attention_mask,
|
1104 |
+
position_ids=position_ids,
|
1105 |
+
head_mask=head_mask,
|
1106 |
+
inputs_embeds=inputs_embeds,
|
1107 |
+
output_attentions=output_attentions,
|
1108 |
+
output_hidden_states=output_hidden_states,
|
1109 |
+
return_dict=return_dict,
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
sequence_output = outputs[0]
|
1113 |
+
|
1114 |
+
logits = self.qa_outputs(sequence_output)
|
1115 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1116 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1117 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1118 |
+
|
1119 |
+
total_loss = None
|
1120 |
+
if start_positions is not None and end_positions is not None:
|
1121 |
+
# If we are on multi-GPU, split add a dimension
|
1122 |
+
if len(start_positions.size()) > 1:
|
1123 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1124 |
+
if len(end_positions.size()) > 1:
|
1125 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1126 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1127 |
+
ignored_index = start_logits.size(1)
|
1128 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1129 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1130 |
+
|
1131 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1132 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1133 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1134 |
+
total_loss = (start_loss + end_loss) / 2
|
1135 |
+
|
1136 |
+
if not return_dict:
|
1137 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1138 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1139 |
+
|
1140 |
+
return QuestionAnsweringModelOutput(
|
1141 |
+
loss=total_loss,
|
1142 |
+
start_logits=start_logits,
|
1143 |
+
end_logits=end_logits,
|
1144 |
+
hidden_states=outputs.hidden_states,
|
1145 |
+
attentions=outputs.attentions,
|
1146 |
+
)
|