Text Generation
PEFT
Safetensors
mistral
conversational
Eval Results
dfurman commited on
Commit
39849ad
1 Parent(s): 02f5678

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +261 -3
README.md CHANGED
@@ -1,11 +1,269 @@
1
  ---
 
2
  library_name: peft
 
 
 
 
 
 
 
 
3
  base_model: mistralai/Mistral-7B-v0.1
4
- license: apache-2.0
5
  ---
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- ### Framework versions
9
 
10
 
11
- - PEFT 0.6.3.dev0
 
1
  ---
2
+ license: apache-2.0
3
  library_name: peft
4
+ tags:
5
+ - mistral
6
+ datasets:
7
+ - jondurbin/airoboros-2.2.1
8
+ - Open-Orca/SlimOrca
9
+ - garage-bAInd/Open-Platypus
10
+ inference: false
11
+ pipeline_tag: text-generation
12
  base_model: mistralai/Mistral-7B-v0.1
 
13
  ---
14
 
15
+ <div align="center">
16
+
17
+ <img src="./logo.png" width="150px">
18
+
19
+ </div>
20
+
21
+ # Mistral-7B-Instruct-v0.2
22
+
23
+ A pretrained generative language model with 7 billion parameters geared towards instruction-following capabilities.
24
+
25
+ ## Model Details
26
+
27
+ This model was built via parameter-efficient finetuning of the [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) base model on the first 20k rows in each of the [jondurbin/airoboros-2.2.1](https://huggingface.co/datasets/jondurbin/airoboros-2.2.1), [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca), and [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) datasets.
28
+
29
+ - **Developed by:** Daniel Furman
30
+ - **Model type:** Decoder-only
31
+ - **Language(s) (NLP):** English
32
+ - **License:** Apache 2.0
33
+ - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
34
+
35
+ ## Model Sources
36
+
37
+ - **Repository:** [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb)
38
+
39
+ ## Evaluation Results
40
+
41
+ | Metric | Value |
42
+ |-----------------------|-------|
43
+ | MMLU (5-shot) | Coming |
44
+ | ARC (25-shot) | Coming |
45
+ | HellaSwag (10-shot) | Coming |
46
+ | TruthfulQA (0-shot) | Coming |
47
+ | Avg. | Coming |
48
+
49
+ We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
50
+
51
+ ## Basic Usage
52
+
53
+ <details>
54
+
55
+ <summary>Setup</summary>
56
+
57
+ ```python
58
+ !pip install -q -U transformers peft torch accelerate einops sentencepiece
59
+ ```
60
+
61
+ ```python
62
+ import torch
63
+ from peft import PeftModel, PeftConfig
64
+ from transformers import (
65
+ AutoModelForCausalLM,
66
+ AutoTokenizer,
67
+ )
68
+ ```
69
+
70
+ ```python
71
+ peft_model_id = "dfurman/Mistral-7B-Instruct-v0.1"
72
+ config = PeftConfig.from_pretrained(peft_model_id)
73
+
74
+ tokenizer = AutoTokenizer.from_pretrained(
75
+ peft_model_id,
76
+ use_fast=True,
77
+ trust_remote_code=True,
78
+ )
79
+
80
+ model = AutoModelForCausalLM.from_pretrained(
81
+ config.base_model_name_or_path,
82
+ torch_dtype=torch.float16,
83
+ device_map="auto",
84
+ trust_remote_code=True,
85
+ )
86
+
87
+ model = PeftModel.from_pretrained(
88
+ model,
89
+ peft_model_id
90
+ )
91
+ ```
92
+
93
+ </details>
94
+
95
+
96
+ ```python
97
+ messages = [
98
+ {"role": "user", "content": "Tell me a recipe for a mai tai."},
99
+ ]
100
+
101
+ print("\n\n*** Prompt:")
102
+ input_ids = tokenizer.apply_chat_template(
103
+ messages,
104
+ tokenize=True,
105
+ return_tensors="pt",
106
+ )
107
+ print(tokenizer.decode(input_ids[0]))
108
+ ```
109
+
110
+ <details>
111
+
112
+ <summary>Prompt</summary>
113
+
114
+ ```python
115
+ "<s> [INST] Tell me a recipe for a mai tai. [/INST]"
116
+ ```
117
+
118
+ </details>
119
+
120
+
121
+ ```python
122
+ print("\n\n*** Generate:")
123
+ with torch.autocast("cuda", dtype=torch.bfloat16):
124
+ output = model.generate(
125
+ input_ids=input_ids.cuda(),
126
+ max_new_tokens=1024,
127
+ do_sample=True,
128
+ temperature=0.7,
129
+ return_dict_in_generate=True,
130
+ eos_token_id=tokenizer.eos_token_id,
131
+ pad_token_id=tokenizer.pad_token_id,
132
+ repetition_penalty=1.2,
133
+ no_repeat_ngram_size=5,
134
+ )
135
+
136
+ response = tokenizer.decode(
137
+ output["sequences"][0][len(input_ids[0]):],
138
+ skip_special_tokens=True
139
+ )
140
+ print(response)
141
+
142
+ ```
143
+
144
+ <details>
145
+
146
+ <summary>Generation</summary>
147
+
148
+ ```python
149
+ """1. Combine the following ingredients in a cocktail shaker:
150
+ 2 oz light rum (or white rum)
151
+ 1 oz dark rum
152
+ 0.5 oz orange curacao or triple sec
153
+ 0.75 oz lime juice, freshly squeezed
154
+ 0.5 tbsp simple syrup (optional; if you like your drinks sweet)
155
+ Few drops of bitters (Angostura is traditional but any will do)
156
+ Ice cubes to fill the shaker
157
+
158
+ 2. Shake vigorously until well-chilled and combined.
159
+ 3. Strain into an ice-filled glass.
160
+ 4. Garnish with a slice of lime or an orange wedge, if desired."""
161
+ ```
162
+
163
+ </details>
164
+
165
+
166
+ ## Speeds, Sizes, Times
167
+
168
+ | runtime / 50 tokens (sec) | GPU | dtype | VRAM (GB) |
169
+ |:-----------------------------:|:---------------------:|:-------------:|:-----------------------:|
170
+ | 3.21 | 1x A100 (40 GB SXM) | torch.bfloat16 | 16 |
171
+
172
+ ## Training
173
+
174
+ It took ~2 hours to train 2 epochs on 1x A100 (40 GB SXM).
175
+
176
+ ### Prompt Format
177
+
178
+ This model was finetuned with the following format:
179
+
180
+ ```python
181
+ tokenizer.chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST] ' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
182
+ ```
183
+
184
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method. Here's an illustrative example:
185
+
186
+ ```python
187
+ messages = [
188
+ {"role": "user", "content": "Tell me a recipe for a mai tai."},
189
+ {"role": "assistant", "content": "1 oz light rum\n½ oz dark rum\n¼ oz orange curaçao\n2 oz pineapple juice\n¾ oz lime juice\nDash of orgeat syrup (optional)\nSplash of grenadine (for garnish, optional)\nLime wheel and cherry garnishes (optional)\n\nShake all ingredients except the splash of grenadine in a cocktail shaker over ice. Strain into an old-fashioned glass filled with fresh ice cubes. Gently pour the splash of grenadine down the side of the glass so that it sinks to the bottom. Add garnishes as desired."},
190
+ {"role": "user", "content": "How can I make it more upscale and luxurious?"},
191
+ ]
192
+
193
+ print("\n\n*** Prompt:")
194
+ input_ids = tokenizer.apply_chat_template(
195
+ messages,
196
+ tokenize=True,
197
+ return_tensors="pt",
198
+ )
199
+ print(tokenizer.decode(input_ids[0]))
200
+ ```
201
+
202
+ <details>
203
+
204
+ <summary>Output</summary>
205
+
206
+ ```python
207
+ """<s> [INST] Tell me a recipe for a mai tai. [/INST] 1 oz light rum\n½ oz dark rum\n (...) Add garnishes as desired.</s> [INST] How can I make it more upscale and luxurious? [/INST]"""
208
+ ```
209
+ </details>
210
+
211
+ ### Training Hyperparameters
212
+
213
+
214
+ We use the [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) from `trl` to fine-tune LLMs on instruction-following datasets.
215
+
216
+ See [here](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/mistral/sft_Mistral_7B_Instruct_v0_1_peft.ipynb) for the finetuning code, which contains an exhaustive view of the hyperparameters employed.
217
+
218
+ The following `TrainingArguments` config was used:
219
+
220
+ - output_dir = "./results"
221
+ - num_train_epochs = 3
222
+ - auto_find_batch_size = True
223
+ - gradient_accumulation_steps = 1
224
+ - optim = "paged_adamw_32bit"
225
+ - save_strategy = "epoch"
226
+ - learning_rate = 3e-4
227
+ - lr_scheduler_type = "cosine"
228
+ - warmup_ratio = 0.03
229
+ - logging_strategy = "steps"
230
+ - logging_steps = 25
231
+ - evaluation_strategy = "epoch"
232
+ - prediction_loss_only = True
233
+ - bf16 = True
234
+
235
+ The following `bitsandbytes` quantization config was used:
236
+
237
+ - quant_method: bitsandbytes
238
+ - load_in_8bit: False
239
+ - load_in_4bit: True
240
+ - llm_int8_threshold: 6.0
241
+ - llm_int8_skip_modules: None
242
+ - llm_int8_enable_fp32_cpu_offload: False
243
+ - llm_int8_has_fp16_weight: False
244
+ - bnb_4bit_quant_type: nf4
245
+ - bnb_4bit_use_double_quant: False
246
+ - bnb_4bit_compute_dtype: bfloat16
247
+
248
+
249
+ ## Model Card Contact
250
+
251
+ dryanfurman at gmail
252
+
253
+ ## Mistral Research Citation
254
+
255
+ ```
256
+ @misc{jiang2023mistral,
257
+ title={Mistral 7B},
258
+ author={Albert Q. Jiang and Alexandre Sablayrolles and Arthur Mensch and Chris Bamford and Devendra Singh Chaplot and Diego de las Casas and Florian Bressand and Gianna Lengyel and Guillaume Lample and Lucile Saulnier and Lélio Renard Lavaud and Marie-Anne Lachaux and Pierre Stock and Teven Le Scao and Thibaut Lavril and Thomas Wang and Timothée Lacroix and William El Sayed},
259
+ year={2023},
260
+ eprint={2310.06825},
261
+ archivePrefix={arXiv},
262
+ primaryClass={cs.CL}
263
+ }
264
+ ```
265
 
266
+ ## Framework versions
267
 
268
 
269
+ - PEFT 0.6.3.dev0