File size: 1,436 Bytes
914bea1 4e020e4 914bea1 4e020e4 914bea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: cc-by-4.0
language:
- en
pipeline_tag: text-classification
tags:
- RoBERTa-large
- topic
- news
---
# Fine-tuned RoBERTa-large for detecting news on crime
# Model Description
This model is a finetuned RoBERTa-large, for classifying whether news articles are about crime.
# How to Use
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="dell-research-harvard/topic-crime")
classifier("Man robs bank")
```
# Training data
The model was trained on a hand-labelled sample of data from the [NEWSWIRE dataset](https://huggingface.co/datasets/dell-research-harvard/newswire).
Split|Size
-|-
Train|463
Dev|98
Test|98
# Test set results
Metric|Result
-|-
F1|0.9041
Accuracy|0.9286
Precision|0.8919
Recall|0.9167
# Citation Information
You can cite this dataset using
```
@misc{silcock2024newswirelargescalestructureddatabase,
title={Newswire: A Large-Scale Structured Database of a Century of Historical News},
author={Emily Silcock and Abhishek Arora and Luca D'Amico-Wong and Melissa Dell},
year={2024},
eprint={2406.09490},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.09490},
}
```
# Applications
We applied this model to a century of historical news articles. You can see all the classifications in the [NEWSWIRE dataset](https://huggingface.co/datasets/dell-research-harvard/newswire).
|