Update README.md
Browse files
README.md
CHANGED
@@ -82,6 +82,14 @@ Evaluated on German [XQuAD: xquad.de.json](https://github.com/deepmind/xquad)
|
|
82 |
|
83 |
## Usage
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
### In Transformers
|
86 |
```python
|
87 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
@@ -101,35 +109,6 @@ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
101 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
102 |
```
|
103 |
|
104 |
-
### In FARM
|
105 |
-
|
106 |
-
```python
|
107 |
-
from farm.modeling.adaptive_model import AdaptiveModel
|
108 |
-
from farm.modeling.tokenization import Tokenizer
|
109 |
-
from farm.infer import QAInferencer
|
110 |
-
|
111 |
-
model_name = "deepset/xlm-roberta-large-squad2"
|
112 |
-
|
113 |
-
# a) Get predictions
|
114 |
-
nlp = QAInferencer.load(model_name)
|
115 |
-
QA_input = [{"questions": ["Why is model conversion important?"],
|
116 |
-
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
|
117 |
-
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
|
118 |
-
|
119 |
-
# b) Load model & tokenizer
|
120 |
-
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
121 |
-
tokenizer = Tokenizer.load(model_name)
|
122 |
-
```
|
123 |
-
|
124 |
-
### In haystack
|
125 |
-
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
126 |
-
```python
|
127 |
-
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2")
|
128 |
-
# or
|
129 |
-
reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2")
|
130 |
-
```
|
131 |
-
|
132 |
-
|
133 |
## Authors
|
134 |
**Branden Chan:** [email protected]
|
135 |
**Timo Möller:** [email protected]
|
|
|
82 |
|
83 |
## Usage
|
84 |
|
85 |
+
### In Haystack
|
86 |
+
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
87 |
+
```python
|
88 |
+
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2")
|
89 |
+
# or
|
90 |
+
reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2")
|
91 |
+
```
|
92 |
+
|
93 |
### In Transformers
|
94 |
```python
|
95 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
|
|
109 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
110 |
```
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
## Authors
|
113 |
**Branden Chan:** [email protected]
|
114 |
**Timo Möller:** [email protected]
|