File size: 9,363 Bytes
8d6918f
 
20891f4
8d6918f
 
9f008c5
 
 
 
 
 
 
 
 
 
 
 
20891f4
9f008c5
20891f4
9f008c5
20891f4
 
9f008c5
20891f4
9f008c5
20891f4
b489e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d6918f
 
12b287c
8d6918f
3158608
 
8d6918f
 
 
 
 
 
12b287c
8d6918f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53566b5
7750210
5e59482
 
53566b5
3158608
8d6918f
3158608
12b287c
 
3158608
12b287c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d6918f
12b287c
8d6918f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158608
 
8d6918f
 
3158608
 
8d6918f
3158608
 
 
 
 
 
 
8d6918f
 
 
3158608
 
 
 
 
8d6918f
 
0382f24
3158608
 
0382f24
3158608
0382f24
 
3158608
 
 
12b287c
3158608
 
12b287c
 
 
8d6918f
3158608
 
7930488
3158608
12b287c
3158608
12b287c
8d6918f
3158608
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
language: en
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/tinyroberta-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 78.8627
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDNlZDU4ODAxMzY5NGFiMTMyZmQ1M2ZhZjMyODA1NmFlOGMxNzYxNTA4OGE5YTBkZWViZjBkNGQ2ZmMxZjVlMCIsInZlcnNpb24iOjF9.Wgu599r6TvgMLTrHlLMVAbUtKD_3b70iJ5QSeDQ-bRfUsVk6Sz9OsJCp47riHJVlmSYzcDj_z_3jTcUjCFFXBg
    - type: f1
      value: 82.0355
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTFkMzEzMWNiZDRhMGZlODhkYzcwZTZiMDFjZDg2YjllZmUzYWM5NTgwNGQ2NGYyMDk2ZGQwN2JmMTE5NTc3YiIsInZlcnNpb24iOjF9.ChgaYpuRHd5WeDFjtiAHUyczxtoOD_M5WR8834jtbf7wXhdGOnZKdZ1KclmhoI5NuAGc1NptX-G0zQ5FTHEcBA
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 83.860
      name: Exact Match
    - type: f1
      value: 90.752
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: adversarial_qa
      type: adversarial_qa
      config: adversarialQA
      split: validation
    metrics:
    - type: exact_match
      value: 25.967
      name: Exact Match
    - type: f1
      value: 37.006
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_adversarial
      type: squad_adversarial
      config: AddOneSent
      split: validation
    metrics:
    - type: exact_match
      value: 76.329
      name: Exact Match
    - type: f1
      value: 83.292
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts amazon
      type: squadshifts
      config: amazon
      split: test
    metrics:
    - type: exact_match
      value: 63.915
      name: Exact Match
    - type: f1
      value: 78.395
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts new_wiki
      type: squadshifts
      config: new_wiki
      split: test
    metrics:
    - type: exact_match
      value: 80.297
      name: Exact Match
    - type: f1
      value: 89.808
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts nyt
      type: squadshifts
      config: nyt
      split: test
    metrics:
    - type: exact_match
      value: 80.149
      name: Exact Match
    - type: f1
      value: 88.321
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts reddit
      type: squadshifts
      config: reddit
      split: test
    metrics:
    - type: exact_match
      value: 66.959
      name: Exact Match
    - type: f1
      value: 79.300
      name: F1
---

# tinyroberta for Extractive QA

This is the *distilled* version of the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model. This model has a comparable prediction quality and runs at twice the speed of the base model.

## Overview
**Language model:** tinyroberta-squad2  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)  
**Infrastructure**: 4x Tesla v100

## Hyperparameters

```
batch_size = 96
n_epochs = 4
base_LM_model = "deepset/tinyroberta-squad2-step1"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
distillation_loss_weight = 0.75
temperature = 1.5
teacher = "deepset/robert-large-squad2"
``` 

## Distillation
This model was distilled using the TinyBERT approach described in [this paper](https://arxiv.org/pdf/1909.10351.pdf) and implemented in [haystack](https://github.com/deepset-ai/haystack).
Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in [deepset/tinyroberta-6l-768d](https://huggingface.co/deepset/tinyroberta-6l-768d).
Secondly, we have performed task-specific distillation with [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) as the teacher for prediction layer distillation. 

## Usage

### In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. 
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
```python
# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/tinyroberta-squad2")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
```
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/tinyroberta-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).

```
"exact": 78.69114798281817,
"f1": 81.9198998536977,

"total": 11873,
"HasAns_exact": 76.19770580296895,
"HasAns_f1": 82.66446878592329,
"HasAns_total": 5928,
"NoAns_exact": 81.17746005046257,
"NoAns_f1": 81.17746005046257,
"NoAns_total": 5945
```

## Authors
**Branden Chan:** [email protected]  
**Timo M枚ller:** [email protected]  
**Malte Pietsch:** [email protected]  
**Tanay Soni:** [email protected]  
**Michel Bartels:** [email protected]

## About us

<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).

Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)