julianrisch commited on
Commit
f77e367
1 Parent(s): 87fe3a3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: de
3
+ license: mit
4
+ thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
5
+ tags:
6
+ - exbert
7
+ ---
8
+
9
+ ![bert_image](https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg)
10
+
11
+ ## Overview
12
+ **Language model:** gelectra-base-germanquad
13
+ **Language:** German
14
+ **Training data:** GermanQuAD train set (~ 12MB)
15
+ **Eval data:** GermanQuAD test set (~ 5MB)
16
+ **Infrastructure**: 1x V100 GPU
17
+ **Published**: Apr 21st, 2021
18
+
19
+ ## Details
20
+ - We trained a German question answering model with a gelectra-base model as its basis.
21
+ - The dataset is GermanQuAD, a new, German language dataset, which we hand-annotated and published [online](https://deepset.ai/germanquad).
22
+ - The training dataset is one-way annotated and contains 11518 questions and 11518 answers, while the test dataset is three-way annotated so that there are 2204 questions and with 2204·3−76 = 6536answers, because we removed 76 wrong answers.
23
+
24
+ See https://deepset.ai/germanquad for more details and dataset download in SQuAD format.
25
+
26
+ ## Hyperparameters
27
+ ```
28
+ batch_size = 24
29
+ n_epochs = 2
30
+ max_seq_len = 384
31
+ learning_rate = 3e-5
32
+ lr_schedule = LinearWarmup
33
+ embeds_dropout_prob = 0.1
34
+ ```
35
+ ## Performance
36
+ We evaluated the extractive question answering performance on our GermanQuAD test set.
37
+ Model types and training data are included in the model name.
38
+ For finetuning XLM-Roberta, we use the English SQuAD v2.0 dataset.
39
+ The GELECTRA models are warm started on the German translation of SQuAD v1.1 and finetuned on \germanquad.
40
+ The human baseline was computed for the 3-way test set by taking one answer as prediction and the other two as ground truth.
41
+ ![performancetable](https://lh3.google.com/u/0/d/1IFqkq8OZ7TFnGzxmW6eoxXSYa12f2M7O=w1970-h1546-iv1)
42
+
43
+ ## Authors
44
+ - Timo Möller: `timo.moeller [at] deepset.ai`
45
+ - Julian Risch: `julian.risch [at] deepset.ai`
46
+ - Malte Pietsch: `malte.pietsch [at] deepset.ai`
47
+ ## About us
48
+ ![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
49
+ We bring NLP to the industry via open source!
50
+ Our focus: Industry specific language models & large scale QA systems.
51
+
52
+ Some of our work:
53
+ - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
54
+ - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
55
+ - [FARM](https://github.com/deepset-ai/FARM)
56
+ - [Haystack](https://github.com/deepset-ai/haystack/)
57
+
58
+ Get in touch:
59
+ [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)