ZhihongShao commited on
Commit
d16cb8a
1 Parent(s): dafda4a

Add cot instruction

Browse files
Files changed (1) hide show
  1. README.md +7 -2
README.md CHANGED
@@ -28,19 +28,24 @@ Here give some examples of how to use our model.
28
 
29
  **Chat Completion**
30
 
 
 
 
 
 
31
 
32
  ```python
33
  import torch
34
  from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
35
 
36
- model_name = "deepseek-ai/deepseek-math-7b-rl"
37
  tokenizer = AutoTokenizer.from_pretrained(model_name)
38
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
39
  model.generation_config = GenerationConfig.from_pretrained(model_name)
40
  model.generation_config.pad_token_id = model.generation_config.eos_token_id
41
 
42
  messages = [
43
- {"role": "user", "content": "what is the integral of x^2 from 0 to 2?"}
44
  ]
45
  input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
46
  outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
 
28
 
29
  **Chat Completion**
30
 
31
+ ❗❗❗ **Please use chain-of-thought prompt to test DeepSeekMath-Instruct and DeepSeekMath-RL:**
32
+
33
+ - English questions: **{question}\nPlease reason step by step, and put your final answer within \\boxed{}.**
34
+
35
+ - Chinese questions: **{question}\n请通过逐步推理来解答问题,并把最终答案放置于\\boxed{}中。**
36
 
37
  ```python
38
  import torch
39
  from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
40
 
41
+ model_name = "deepseek-ai/deepseek-math-7b-instruct"
42
  tokenizer = AutoTokenizer.from_pretrained(model_name)
43
  model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
44
  model.generation_config = GenerationConfig.from_pretrained(model_name)
45
  model.generation_config.pad_token_id = model.generation_config.eos_token_id
46
 
47
  messages = [
48
+ {"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
49
  ]
50
  input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
51
  outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)